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A B S T R A C T

The Amazon and Atlantic Forest are considered the world's most biodiverse biomes. Human and climate change
impacts are the principal drivers of species loss in both biomes, more severely in the Atlantic Forest. In response
to species loss, the main conservation action is the creation of protected areas (PAs). Current knowledge and
research on the PA network's conservation efficiency is scarce, and existing studies have mainly considered a
past temporal view. In this study, we tested the efficiency of the current PA network to maintain climatically
stable areas (CSAs) across the Amazon and Atlantic Forest. To this, we used an ecological niche modeling ap-
proach to biome and paleoclimatic simulations. We propose three categories of conservation priority areas for
both biomes, considering CSAs, PAs and intact forest remnants. The biomes vary in their respective PA networks'
protection efficiency. Regarding protect CSAs, the Amazon PA network is four times more efficient than the
Atlantic Forest PA network. New conservation efforts in these two forest biomes require different approaches.
We discussed the conservation actions that should be taken in each biome to increase the efficiency of the PA
network, considering both the creation and expansion of PAs as well as restoration programs.

1. Introduction

Historically, the Amazon and the Atlantic Forest were continuous.
Currently, however, they are separated by a dry vegetation belt formed
by the Cerrado, Chaco, Caatinga and relicts of Seasonally Dry Tropical
Forests (Prado, 2000; Hoorn et al., 2010; Dryflor, 2016). The Amazon is
located in the northern-northwestern portion of South America,
whereas the Atlantic Forest is the predominant vegetation covering
most of the continent's eastern coast (Fig. 1). These biomes have high
rates of endemism, species richness and diversity, but they are both
suffering from severe forest loss (Laurance et al. 2009; Ribeiro et al.
2009). The Amazon harbors approximately 60% of rainforests re-
maining worldwide, making it one of the most important biomes for
preserving biodiversity, the water cycle and global climate (Salati and
Vose, 1984; Fearnside, 1999). Expansion of agriculture and livestock,
mainly in the southern and eastern regions (Morton et al. 2006; DeFries
et al. 2008), has accelerated the loss of Amazon forest cover (Soares-
Filho et al. 2006).

The fragmentation scenario of Atlantic Forest is even more drastic.

Approximately 100 million people (c.a. 70% of Brazilian population)
live in large cities within this forest domain (Martinelli et al., 2013).
Furthermore, massive industrialization and agricultural expansion have
fragmented the forested area (Scarano and Ceotto, 2015). Currently,
only 11.6% of its original forest cover remains (Ribeiro et al., 2009),
distributed in a mosaic of small disconnected fragments (Joly et al.,
2014) that often do not exceed 50 ha (Ribeiro et al., 2011). The Atlantic
Forest is listed among 25 global priority conservation hotspots (Myers
et al., 2000; Mittermeier et al., 2004).

Climate change is a driver of biodiversity loss (Root et al., 2003;
Araújo et al., 2004; Bellard et al., 2012). It may cause spatial dis-
placement of species ranges since species tend to shift toward en-
vironmentally suitable areas over time (Eldredge et al., 2005), as de-
monstrated by some Atlantic Forest tree species (Colombo and Joly,
2010). Due to this threat in a future climate scenario, the Atlantic Forest
is considered as one of the three hotspots most vulnerable to global
warming (Bellard et al., 2014).

The combined impacts of habitat fragmentation and climate change
on Amazon and Atlantic Forest biodiversity highlight the need to
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increase conservation actions such as the creation of protected areas
(PAs). However, these strategies are only marginally effective for local
biodiversity conservation (Colyvan et al., 1999; Rylands and Brandon,
2005; Jenkins and Joppa, 2009). In this scenario of high rates of habitat
loss, fragmentation and climate change, innovative and more effective
biodiversity conservation strategies with the potential for worldwide
application are needed. Approaches being discussed include the Re-
serve Selection method, which aims to maximize biodiversity within
PAs (Margules and Pressey, 2000). However, the shift of species dis-
tribution over time could decrease the efficiency of PAs (Araújo et al.,
2004). Thus, to ensure conservation efficiency and the maintenance of
species over time, the design of PAs must consider a climate change
scenario (Araújo et al., 2011).

The most common Reserve Selection Method uses information
about species distribution and assumes that PAs should encompass
areas with greater species diversity and, in some cases, long-term spe-
cies persistence (Cabeza and Moilanen, 2001). However, species dis-
tribution patterns are dynamic over time, while PAs protect populations
in a static space and for a limited period. These aspects increase the risk
of PAs not adequately protecting endangered species in the long term if
climate change results in range shifts (Araújo et al., 2002). Conse-
quently, other methods have been developed to ensure the efficiency of
PAs within climate change scenarios, such as the Habitat Suitability and
Reserves Connectivity Methods (Onal and Briers, 2002; Cabeza, 2003;

Cabeza et al., 2004). These methods use a niche modeling approach to
infer the dynamics of species distribution within a climate change
scenario. Distribution patterns for many species are predicted for var-
ious climate scenarios, and an overlap of these distributions shows a
geographical pattern of species richness. Identifying the areas with a
high richness ratio in all climate scenarios ensures the most suitable
placement of PAs (Araújo et al., 2004; Loyola et al., 2012).

Although various methods for predicting PA efficiency exist, the
knowledge concerning Amazon and Atlantic Forest PA efficiency is
limited to a few papers that tested the conservation of high richness
areas under the current climate and/or future climate change. For ex-
ample, studies reported a loss of phylogenetic diversity of frog species
inside Atlantic Forest PAs under a global warming scenario (Lemes
et al., 2014; Loyola et al., 2014). Similarly, Ferro et al. (2014) observed
a loss of Arctiidae (moths) within Atlantic Forest PAs. In contrast, the
Amazon PAs were shown to be effective in preserving areas with higher
species richness of freshwater turtles (Fagundes et al., 2016) and
mammals (Avezedo-Ramos et al., 2006) under current climate and
habitat fragmentation conditions.

Another approach to testing PA efficiency is to contrast protected
areas' delimitation with that of Climatically Stable Areas (CSAs).
Terribile et al. (2012) proposed that PAs should be delineated to co-
incide with long-term CSAs, which are suitable for species occurrence in
past, present and (if possible) future climate conditions. CSAs ensure
the survival of different species by providing them with suitable habi-
tats over time (Carnaval et al., 2009). CSA, in combination with the
presence of large-sized seed dispersers, was important for maintain
genetic diversity of Euterpe edulis, a key palm tree within Atlantic Forest
biome (Carvalho et al., 2017). Therefore, PAs that cover CSAs offer
species long-term protection, regardless of the species' dispersion ability
and distribution shifts (Collevatti et al., 2013).

The Atlantic Forest CSAs (sometimes reported as refuges) have been
proposed based on biome delimitation and for different taxa (Carnaval
and Moritz, 2008; Carnaval et al., 2009; Carvalho and Del Lama, 2015).
Several Amazon CSAs have also been proposed, varying according to
taxonomic group (Haffer, 1969; Vanzolini and Williams, 1981; Prance,
1982; Brown, 1987; Haffer and Prance, 2001). However, there is no
consensus on where these CSAs occur or on whether Amazon CSAs
actually exist (Colinvaux et al., 2000; Bush and Oliveira, 2006). So far,
no studies have tested the efficiency of PAs to conserve Amazon and
Atlantic Forest CSAs, despite this knowledge this being of primary
importance given the high rates of species richness and high in-
traspecific genetic variability in these areas (see Haffer, 1969; Carnaval
and Moritz, 2008; Terribile et al., 2012; Collevatti et al., 2013).

In this paper, we aim to quantify the efficiency of PAs in the con-
servation of Amazon and Atlantic Forest CSAs. We use ecological niche
modeling techniques to simulate the biomes and their paleoclimate in
three different temporal climate change conditions — Last Glacial
Maximum (LGM; 21ka), Holocene (6ka) and current — to propose
conservation priority areas in both biomes. These Pleistocene climatic
scenarios were used because it is recognized by changing in the geo-
graphical delimitation of studied biomes through time (Carnaval et al.,
2009; 2009; Sobral-Souza et al. 2015a,b). Based on the difference be-
tween Atlantic Forest and Amazon fragmentation scenarios and the size
of remaining forests (cited above), we hypothesize that Amazon PAs are
more efficient than Atlantic Forest PAs in the conservation of CSAs.

2. Methods

2.1. Inferring the potential distribution of Amazon and Atlantic Forest over
time

We used an Ecological Niche Modeling (ENM) framework to infer
the current distribution and the palaeodistribution (21ka and 6ka) of
the Amazon and Atlantic Forest. The ENM technique estimates the as-
sociation between environmental variables (usually climate) and

Fig. 1. Amazon and Atlantic Forest geographical delimitation (modified from Olson et al.
(2001) and Lima et al. (2017), respectively) and the occurrence points used to build the
ENMs.
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occurrence points to characterize the tolerated variation in environ-
mental conditions and to plot potential suitability in other locations
where there is no known occurrence (Franklin, 2009; Peterson et al.,
2011). Although ENM is normally used to infer species distribution, this
technique has also been used to predict biome delimitation and biome
modeling (see Sobral-Souza et al., 2015a). To predict biome distribu-
tion over time, we selected occurrence points using a geographical filter
with 0.5° cell resolution based on current biome delimitations adapted
from the terrestrial ecoregions proposed by Olson et al. (2001) and the
extent of Atlantic Forest as described in Lima et al. (2017). To get the
occurrence points, we randomized 100 points distributed over almost
the entire geographical extent of each biome (100% for Amazonia and
96% for Atlantic Forest), including some ecotone regions (Fig. 1).

According to Clements (1949) and Whittaker (1971) climate con-
ditions, mainly mean temperature and annual precipitation, are the
major variables influencing biome delimitation worldwide. Based on
this information, we used annual mean temperature and annual pre-
cipitation as variables to build the biome models used here. Several
Atmosphere-Ocean Global Circulation Models (AOGCMs) that infer past
global climate currently exist; we used five of them — CCSM, CNRM,
IPSL, MRI and MIROC — with 0.5° resolution (∼50 km×50 km at
Equator, available in EcoClimate database – Lima-Ribeiro et al., 2015)
and the Neotropical region as background extension. We selected this
extension following the historical and evolutionary background selec-
tion criteria proposed by Barve et al. (2011).

We used five algorithms to predict past and current distributions of
Amazon and Atlantic Forest, including three presence-only algorithms
— (1) Bioclim (Nix, 1986), (2) Mahalanobis distance (Farber and
Kadmon, 2003) and (3) Domain/Gower distance (Carpenter et al.,
1993) — and two presence/background algorithms: (4) support vector
machines (SVM) (Tax and Duin, 2004) and (5) maximum entropy
(Phillips and Dudik, 2008). We used this combination of different al-
gorithms to increase the reliability of the predictions (see Barry and
Elith, 2006; Diniz-Filho et al., 2009). All models were built based on the
current climate scenario and projected to each of the past climate
conditions (21ka and 6ka).

To evaluate the generated models, we randomized the occurrence
points in two groups, train and test, using bootstrap analysis with 70%
and 30% of the points, respectively. As these two groups are subsets of
the same occurrence points, we reduced data correlation throughout a
randomized bootstrap process 20 times for each algorithm and each
AOGCM. Thus, we ran 500 models (20 times x 5 algorithms x 5
AOGCMs) for each temporal scenario in the Amazon and another 500
models for Atlantic Forest temporal delimitation predictions.

Subsequently, we estimated the lowest presence threshold (LPT)
value (Pearson et al., 2007) for each model to transform the continuous
suitability maps into binary maps (presence or absence). We then ob-
tained the frequency map by ensemble forecasting (Araújo and New,
2007). For this, we first concatenated maps within the same algorithm,
then within the same AOGCM and finally, between AOGCMs. The final
suitability values varied from 0 to 500; i.e., each cell displayed a value
corresponding to the frequency with which occurrence was predicted as
presence. The final prediction for each temporal scenario was obtained
using the threshold of 50% for Amazon and 75% for Atlantic Forest.
These thresholds were used because they generated maps with potential
distribution areas similar to the current actual distribution.

Finally, we evaluated the models by estimating the true skill statistic
(TSS) based on the LPT values. The TSS values varied from −1 to 1.
Negative or close-to-zero values indicate that the models are not sta-
tistically different from randomly generated models; values close to 1
indicate good models, but values above 0.5 are assumed to indicate
suitable models (Allouche et al., 2006).

2.2. Calculating the climatically stable areas and protected area efficiency

To predict the Atlantic Forest and Amazon CSAs, we overlapped the

maps of potential distribution for all temporal scenarios. We designated
as CSA the cells that were predicted to be suitable for biome occurrence
in all temporal climate scenarios. We then calculated the current bio-
me's predicted area (km2) and the area of its CSAs. For this purpose, we
georeferenced all maps using a coordinate geographic system (Datum
WGS84) and calculated the total area. Using 0.5° cell resolution, the cell
area was ∼2500 km2.

To calculate PA efficiency, we downloaded a shapefile of South
American PAs, including full protection areas and sustainable use units
(available on http://www.protectedplanet.net). For Amazon, we used
PAs of all country that it embraced. But, for Atlantic Forest PAs we used
only Brazilian PAs. After mapping all PAs, we overlapped the PA and
CSA maps to obtain a map of the PAs situated within CSAs. In some
cases, the area of the PA was either smaller than the cell size (0.5°), or it
incorporated only portions of different cells. Therefore, we considered
cells that contained any proportion of PA as protected, following Ferro
et al. (2014). Next, we inferred the areas (km2) of CSAs that are pro-
tected by PAs. Finally, to test PA efficiency, we created four indexes: (i)
protection index – percentage of current biome extent that is protected
by PAs; (ii) CSA index – the percentage of current biome extent that is
considered as CSAs; (iii) CSA protection index – the percentage of CSAs
that are protected by PAs; and (iv) efficiency index – the percentage of
PAs that encompass CSAs.

2.3. Proposing areas for conservation prioritization

To propose an area for conservation prioritization, we first mapped
unprotected CSAs. Then, we used the IFL 2013 database (available at
http://www.intactforests.org/data.ifl.html) to infer which unprotected
CSAs have intact forest remnants free of anthropogenic modification,
considering only large and connected patches and excluding small and
disconnected remnants. We assigned each of these patches to one of
three conservation priority categories: very high priority area, for CSAs
with unprotected intact forest remnants; high priority area, for CSAs
with unprotected and fragmented forest remnants; medium priority area,
for more recent climatically stable areas (6ka to current) with un-
protected intact forest remnants.

3. Results

3.1. Potential distribution of Amazon and Atlantic Forest over time

The ENM predictions were reliable for all algorithms and AOGCMs,
evidenced by TSS values higher than 0.5. The models inferred a dis-
tribution of Amazon and Atlantic Forest similar to the biomes' known
delimitations (0 k; Fig. 2). From 21ka to the present, the Amazon and
Atlantic Forest have undergone expansion and retraction, respectively
(Fig. 2, Table 1).

3.2. Climatically stable areas and protected area efficiency

Our results revealed three disconnected CSA blocks within the
Atlantic Forest: in the north, the center, and the south respectively. The
majority of Atlantic Forest CSAs are near the coast. In the Amazon, the
CSAs are broad and continuous and cover most of the current biome.
Most CSA patches occur in eastern region of the Amazon, while minor
patches are found along its western and southern boundaries (Fig. 3).

Our index inferred higher efficiency of Amazon PAs for CSA con-
servation, in comparison to Atlantic Forest PAs. The Amazon protection
index was 40.1%, the Amazon CSA index was 58.2%, the Amazon
protection CSA index was 0.407, and the Amazon efficiency index was
59.2%. In comparison, the Atlantic Forest's protection index was 9.1% of
the biome is protected; the Atlantic Forest CSA index was 22.7%, the
Atlantic Forest CSA protection index was 7.1%, showing that larger
CSAs lack protection; and the Atlantic Forest efficiency index was
17.9%, i.e., most Atlantic Forest protected areas fall outside of the CSAs
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(Table 2). Comparison of the two biomes' values highlights the dis-
crepancy in their PA efficiency with respect to CSA conservation.

3.3. Areas for conservation prioritization

We defined the following conservation prioritization for the
Amazon biome: Very high priority areas are CSA localities with intact
forest remnants and are geographically close to existing PAs, mainly in
the biome's eastern region. High priority areas are CSAs composed of
fragmented forest remnants and are located in the western Amazon
region, with discontinuous and isolated PAs. Finally, medium priority
areas are more recent CSAs (6ka to current), located in the central/
western Amazon region; these CSAs contain intact forest remnants and
are considered vital for linking some very high priority areas with existed
PAs (Fig. 4).

In the Atlantic Forest, the scenario is catastrophic. No very high
priority areas were identified in the biome because intact forest is
nonexistent in this area. The main Atlantic Forest CSAs are small,
fragmented forest remnants and were therefore categorized as high
priority areas (Fig. 4).

4. Discussion

The Atlantic Forest CSAs have a disjunct distribution in three dif-
ferent regions — north, center and south — while the Amazon CSAs are
geographically continuous, mainly in the eastern region of the biome
(Fig. 3). Using different methodologies, Carnaval and Moritz (2008),
Carnaval et al. (2009), Batalha-Filho et al. (2013) and Carvalho and Del
Lama (2015) identified CSAs in regions similar to those we predicted.
However, the determination of Amazon CSAs is controversial, because
studies of distinct taxa-such as butterfly, frog, lizard, bird and tree fa-
milies-demarcate different CSAs (see Bush and Oliveira, 2006). Others
question the veracity of Amazon CSAs because some of the studies did
not used paleoclimatic data or evolutionary studies (Colinvaux et al.,
2000; Bush and Oliveira, 2006), which may invalidate the current
models of Amazon CSAs.

Although CSAs are recognized as priority conservation areas
(Carnaval and Moritz, 2008; Keppel et al., 2015), no study has tested PA
efficiency for Atlantic Forest and Amazon CSAs conservation. We found
Amazon PAs to be more efficient than Atlantic Forest (59.2% and
17.9% respectively; Table 2), perhaps because of the conservation
history of each biome. According to Joly (personal communication) and

Fig. 2. Potential distribution of Amazon and Atlantic Forest, inferred through Ecological Niche Modeling (ENM) in three different climate scenarios (21 k, 6 k and current).

Table 1
Potential areas (km2) of Amazon and Atlantic Forest in the studied climate scenarios.

Biome Present 6 k 21 k

Amazon 4462500 4252500 3280000
Atlantic Forest 769250 168000 3850000

Fig. 3. Climatically stable areas (CSAs) of Amazon and Atlantic Forest and the protected
climatically stable areas.
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Dean (1996), the Atlantic Forest PA network was created under a high
forest fragmentation scenario, and most of the remaining forest was
transformed into conservation units, independent of evolutionary his-
tory or ecological attributes. In contrast, the Amazon PA network was
developed under a scenario of large, continuous forest patches and
involved much debate about refuge and areas with high taxa diversity.

The lower efficiency of Atlantic Forest PAs for CSA conservation is
reported here for the first time. This finding is corroborated by studies
of PA efficiency in maintaining species richness under a climate change
scenario: Lemes et al. (2014) showed decreasing richness of anurans in
Atlantic Forest PAs under a global warming scenario. Loyola et al.
(2014) inferred the reduction of phylogenetic diversity within Atlantic
Forest PAs. Ferro et al. (2014) warned about a decreasing trend for
moth species within Atlantic Forest PAs under a future climate scenario.
All these findings point to a likely catastrophic scenario for the Atlantic
Forest and highlight the low efficiency of Atlantic Forest PAs in pre-
serving local biodiversity.

We found that only 18% of Atlantic Forest PAs overlap with CSAs,

but this index no-included Argentina CSAs and PAs in the Misiones
province. Even if we considered the Misiones CSAs the results evidence,
coupled with inefficiency of Atlantic Forest PAs in conserving different
taxa under climate warming (Lemes et al., 2014; Ferro et al., 2014;
Loyola et al., 2014) and the negative influence of future climate shift on
Atlantic Forest species distribution (Colombo and Joly, 2010), is cause
for concern regarding the conservation of the Atlantic Forest in the
coming years. Additionally, the increasing future extinction risk for
threatened species (Sobral-Souza et al., 2015b) and the catastrophic
landscape modification scenario (Ribeiro et al., 2009) reinforce the
need for new conservation strategies to improve Atlantic Forest con-
servation. However, expand the current knowledge of the relationship
between biodiversity, ecological processes and ecosystem services in
different climate change scenarios are also important paramount in
decision-making, since a highly fragmented landscape increases the
complexity of conservation strategies (Joly et al., 2014).

Until now, no studies have tested the efficiency of the Amazon PA
network for CSA conservation, and few articles reported on the PA
network's efficiency in Amazonian species conservation. Studies in the
Amazon suggest an intermediate (approximately 40%) PA efficiency in
the conservation of Amazonian mammals and freshwater chelonian
species (Avezedo-Ramos et al., 2006; Fagundes et al., 2016). Simula-
tions of future forest loss by Soares-Filho et al. (2006) confirmed that
PAs are the principal conservation strategies adopted in the Amazon.
While this strategy is important for biodiversity maintenance, PAs alone
are insufficient as a conservation plan. According to the authors, in-
creasing the area of current PAs and the creation of new PAs in private
areas are measures that should be adopted, being the most efficient
ways to conserve Amazonian biodiversity.

We proposed conservation priority areas for Amazon and Atlantic
Forest biomes. Our results showed conflicting scenarios for the two
Neotropical rainforests. We indicated three classes for Amazon

Table 2
Predicted area, percentage of protection, climate stable area index, and efficiency index of
Amazon and Atlantic Forest PAs.

Amazon Atlantic Forest

Current Predicted Area (km2) 4462500 769250
Protected Area (km2) 1787500 7000
Climatically stable area (km2) 2597500 175000
Protected Stable Area (km2) 1057500 12500
Protection index (%) 40.1 9.1
CSA index (%) 58.2 22.7
CSA protection index (%) 40.7 7.1
Efficiency Index (%) 59.2 17.9

Fig. 4. Proposal of conservation priority areas in Amazon and Atlantic Forest biomes. Red cells = very high priority areas; orange cells = high priority areas; light green cells=medium
priority areas; dark green cells = existing protected areas. See Methods section for discussion of the conservation strategies proposed for western and eastern Amazon regions (rectangle
above) and Atlantic Forest (right below). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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conservation (very high priority areas, high priority areas and medium
priority areas) and only one (high priority areas) for Atlantic Forest
(Fig. 4). Each type of conservation area that we propose requires a
different conservation strategy. The very high priority areas (Fig. 4,
shown in red) are intact CSA forests close to existing PAs in western
Amazon. Their geographic proximity to PAs suggests that the creation
of new PAs, or an increase in area of existing ones, that incorporate
these high priority areas may be effective conservation strategies. The
high priority areas (Fig. 4, shown in orange) are fragmented CSA forests
and are therefore in need of restoration. The important priority areas of
the western Amazon are near to existing PAs or intact fragments. The
high resilience of these areas, due to seed banks and dispersion drivers,
is an important precondition for high conservation effectiveness. In the
eastern Amazon, however, resilience is low because agriculture and
livestock are the predominant land uses in this region (Morton et al.,
2006; DeFries et al., 2008), and because forested areas are distant.
Consequently, sustainable replanting plans (to modify the agriculture
system and land use) are necessary to increase PA efficiency in this
region.

For Atlantic Forest the situation is dire because only a few forest
remnants are large in size (e.g. > 10,000 ha; Ribeiro et al., 2009), and
many of the remnants occur in areas with low climate stability. Even so,
these Atlantic Forest CSA are localized on areas with high resilience and
indicated as bottleneck of connectivity by Tambosi et al. (2014). These
areas cover mainly the coastal zone of Atlantic Forest biome at Per-
nambuco, Bahia and Serra do Mar subregions, but also in the seasonal
forests on the surroundings of Iguaçu State Park (Ribeiro et al., 2011).

Here, we demonstrated that Amazon PAs are more efficient than the
Atlantic Forest PA network for CSA conservation. Our findings are si-
milar to other studies that used different methods. We used a simple
methodological framework that can easily be used in other biomes
around the world to further an understanding of current PA efficiency
based on the biomes' evolutionary climate histories. Decisions re-
garding new global conservation plans and PA network should use a
variety of criteria based on prior knowledge of species richness, cli-
matically stable areas, endemism zones, deforestation and carbon stock,
among others, underscoring the need for new studies at local and global
scales.
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