ATLANTIC SPATIAL: a data set of landscape, topographic, hydrologic and anthropogenic 1

2 metrics for the Atlantic Forest

- 3
- Maurício Humberto Vancine^{1*}, Bernardo Brandão Niebuhr^{1,2*}, Renata L. Muylaert³, Júlia Emi de 4
- Faria Oshima⁴, Vinicius Tonetti¹, Rodrigo Bernardo¹, Rafael Souza Cruz Alves¹, Eduardo Miguel 5
- Zanette⁵, Victor Casagrande Souza⁶, João Gabriel Ribeiro Giovanelli⁷, Carlos Henrique Grohmann⁸, 6
- Mauro Galetti^{5,9}, Milton Cezar Ribeiro^{1,10} 7
- 8
- 9 ¹ Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade,
- Laboratório de Ecologia Espacial e Conservação, Rio Claro, SP, Brazil. 10
- 11 ²Norwegian Institute for Nature Research (NINA), Oslo, Norway.
- 12 ³ Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University,
- 13 Palmerston North, New Zealand.
- 14 ⁴ Movement Ecology Laboratory, University of São Paulo (USP), Institute of Biosciences, Ecology
- 15 Department, Rua do Matão, 321, 05508-090, São Paulo, SP, Brazil.
- 16 ⁵ Universidade Estadual Paulista (Unesp), Instituto de Biociências, Departamento de Biodiversidade,
- 17 Laboratório de Primatologia, Rio Claro, SP, Brazil.
- 18 ⁶ Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade,
- 19 Laboratório de Biologia da Conservação, Rio Claro, SP, Brazil.
- 20 ⁷ Seleção Natural (SN), Rua Cezira Giovanoni Moretti, 655, AgTech Garage, Piracicaba, SP, 13414-157, 21 Brazil.
- 22 ⁸ Universidade de São Paulo, Instituto de Energia e Ambiente, Laboratório de Análise Espacial e Modelagem
- 23 (SPAMLab), Prof. Luciano Gualberto Avenue, 1289, São Paulo, 05508-010, Brazil.
- 24 ⁹ Kimberly Green, Latin American and Caribbean Center, Florida International University (FIU), Miami, FL, 25 USA.
- 26 ¹⁰ Universidade Estadual Paulista (Unesp), Environmental Studies Center (CEA), Laboratório de Ecologia
- 27 Espacial e Conservação, Rio Claro, SP, Brazil.
- 28

29 * Correspondence

- 30 Correspondence and request for material should be addressed to Maurício Humberto Vancine
- 31 (mauricio.vancine@gmail.com), Bernardo Brandão Niebuhr (bernardo_brandaum@yahoo.com.br)
- 32 or Milton Cezar Ribeiro (miltinho.astronauta@gmail.com).
- 33
- 34 Maurício Humberto Vancine and Bernardo Brandão Niebuhr should be considered joint first authors.
- 35
- **Open Research statement** 36
- 37 https://doi.org/10.17605/OSF.IO/AJUMC.
- 38
- 39
- 40

41 Introduction

42

In ecology, space matters. Space affects the main drivers of biodiversity, since it regulates the 43 underlying processes affecting the distribution and dynamics of species (Fletcher and Fortin 2018). 44 45 These ecological processes, such as environmental filtering, biotic interactions, dispersal and 46 ecological drift drive the response of organisms to environmental factors such as climate, topography, 47 land use and land cover (LULC), soil types and habitat connectivity and heterogeneity (Anderle et al. 48 2022, Messager et al. 2023). Thus, space is a fundamental component in the face of rapid effects of 49 climate and LULC changes at local and global scales, as well as their widespread consequences for 50 habitat loss and fragmentation (Jetz et al. 2007, He et al. 2019, Williams and Newbold 2020). Having 51 available geospatial environmental data is essential to assess these effects at different spatial and 52 temporal scales, extents and grains (e.g., Lima-Ribeiro 2015, Vega et al. 2017, Fick and Hijmans 53 2017, Souza et al. 2020, Karger et al. 2020, Poggio et al. 2021, Potapov et al. 2022, Hawker et al. 54 2022, Hansen et al. 2022, Tang and Werner 2023). Comprehensive spatial data sets are important to 55 address conservation and restoration efforts to maintain biodiversity and their ecological processes 56 (Dirzo et al. 2014, He et al. 2015, Young et al. 2016, Johnson et al. 2017). Ultimately, such data sets 57 would help to unravel frequent 'spatial complications' [neglected contribution of space in explaining 58 ecological processes] (Kareiva 1994) in ecology and other geospatial disciplines.

59 Habitat loss and fragmentation are currently the major threats to biodiversity and ecological 60 processes worldwide (Fahrig 2003, Haddad et al. 2015). Landscapes composition and configuration 61 are essential factors determining biodiversity, population dynamics, species interactions, dispersal and movement, functions the biota perform across the space (Fahrig 2003, Driscoll et al. 2013, Duflot 62 63 et al. 2017). Besides, different landscape metrics can be used as proxies of landscape heterogeneity 64 to predict biodiversity and ecosystem function (Tonetti et al. 2023). This is especially relevant in 65 fragmented landscapes where natural vegetation fragments are surrounded by different anthropogenic 66 land cover types (Fischer and Lindenmayer 2007, Turner and Gardner 2015). Landscape metrics can 67 also be used in the identification of priority areas for conservation (Tambosi et al. 2014), in addition 68 to predicting species' potential distribution (Fletcher et al. 2016). Furthermore, these metrics must be 69 computed considering different scales depending on the phenomenon of interest (Jackson and Fahrig 2015, Miguet et al. 2016), and the specific species functional responses to landscape structure (Mimet 70 71 et al. 2013, Riva and Nielsen 2020).

The Atlantic Forest of South America (AF) is among the global biodiversity hotspots due to its high species richness and endemism associated with severe habitat loss (Myers et al. 2000, Sloan et al. 2014). The AF covers almost the entire coast of Brazil and reaches inland portions of the continent in parts of Paraguay and Argentina, and its vegetation covered over 1.6 million km² before

the European colonization (Margues et al. 2021). Due to its wide longitudinal, latitudinal and 76 77 altitudinal range, the AF has high environmental heterogeneity with different vegetation types generated mainly by the rainfall distribution, from its coast as Mangrove and Sandy coastal plain 78 79 vegetation (restinga), passing through humid forest (Dense Ombrophilous, Open Ombrophilous, 80 Mixed Ombrophilous), and dry forest formations (Semideciduous and Deciduous Seasonal) (Joly et 81 al. 2014). These geographical characteristics, combined with a large topographic variability and pre-82 historic process of formation, favored high species diversification rates and endemism (Carnaval et 83 al. 2014, Peres et al. 2020).

84 The high diversification rate in AF is evidenced by its high biodiversity: it contains almost 85 18,000 species of plants (Flora e Funga do Brasil 2023); 2,645 species of Tetrapoda (Figueiredo et 86 al. 2021); around 1,000 species of fish (Reis et al. 2016); 1400 species of social insects (Feitosa et al. 87 2021); more than 2,000 species of butterflies (Iserhard et al. 2017); more than 112,000 species of 88 arachnids (Giupponi et al. 2017); and from 3 to 12 million species of unknown bacteria (Lambais et 89 al. 2006). In addition to its high biodiversity, the AF directly provides ecosystem services for >150 90 million people, such as water provisioning and regulation, hydroelectric energy generation, food 91 production, pollination, soil protection, climate regulation, carbon storage, air quality and cultural 92 services (Joly et al. 2014, Pires et al. 2021). A great part of the AF biodiversity is highly threatened, 93 especially birds (Bonfim et al. 2021), small mammals (Palmeirim et al. 2019), medium and large 94 mammals (Rios et al. 2021b) and amphibians (Almeida-Gomes and Rocha 2014). Furthermore, 95 ecological processes are also affected by landscape modifications, such as interaction networks 96 (Marjakangas et al. 2020, Monteiro et al. 2022), carbon storage (Bello et al. 2015, de Lima et al. 2020, 97 Pyles et al. 2022) and pollination (Varassin et al. 2021). In addition, other threats to the AF landscapes 98 are defaunation (Galetti et al. 2017, 2021), the introduction of non-native species (Vitule et al. 2021) 99 and climate change (Scarano and Ceotto 2015, Vale et al. 2021).

100 The AF covers the three countries (Argentina, Brazil and Paraguay) with the largest 101 deforestation areas in the world between 1982 and 2016 (Song et al. 2018). Thus, landscape 102 modifications within the AF have caused impacts reported by a series of studies that still show a 103 warning scenario. Despite a temporal stability of around 28 Mha of forest, a considerable part of this 104 forest is made up of the replacement of old native forests by young forests (Rosa et al. 2021). 105 Furthermore, although recent estimates state that there are around about 23% of forest and 36% of 106 natural vegetation, there is a high fragmentation scenario—97% of fragments are <50 ha, 60% are 107 under edge effect (<90 m), and there is high isolation of vegetation fragments (mean of 250 to 830 108 m) (Vancine et al. 2023). Moreover, the high density of linear infrastructure (roads and railways) in 109 AF affects the vegetation remnants—especially the large ones (>500,000 ha), proving to have a major 110 negative impact on biodiversity (Cassimiro et al. 2023, Vancine et al. 2023).

111 The AF is one of the most intensely studied biomes in the world. A large initiative organized 112 by Brazilian researchers – the ATLANTIC SERIES of data papers – have compiled hundreds of 113 thousands of records of occurrence and abundance of animal and plant species in the AF 114 (https://esajournals.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1939-9170.AtlanticPapers).

115 Biodiversity data were collected for decades and have been recently synthesized for AF in numerous 116 data papers from the collection (Bello et al. 2017, Bovendorp et al. 2017, Figueiredo et al. 2017, Lima 117 et al. 2017, Muylaert et al. 2017, Goncalves et al. 2018a, 2018b, Hasui et al. 2018, Vancine et al. 118 2018, Santos et al. 2018, Souza et al. 2019, Culot et al. 2019, Ramos et al. 2019, Rodrigues et al. 119 2019, Silva et al. 2022, Boscolo et al. 2023). These data sets have provided an unprecedented 120 opportunity for the assessment of how environmental conditions and species interactions can predict 121 biodiversity patterns from species to assemblages (e.g. Bovendorp et al. 2019, Palmeirim et al. 2019, 122 Rios et al. 2021b, 2021a, Bonfim et al. 2021). However, such studies rely on a highly variable set of 123 spatial data and require intensive data processing, usually differing in the scale and grain, as well as 124 source and quality.

125 Here, we present the ATLANTIC SPATIAL data set, where we organize and synthesize 126 spatial data on land cover and land use, landscape, topographic, hydrologic and anthropogenic metrics for the entire AF. Making these data available avoids complex and computationally demanding 127 128 geoprocessing steps from having to be re-run and allows for different biodiversity studies to be more 129 reproducible and potentially comparable, since they would use as source the same set of spatial data. 130 We present raster maps at 30-m resolution, making it possible to easily integrate spatial and 131 biodiversity data in ecological studies. We provide several metrics derived from different moving 132 window sizes, so that it can be used as effect scales on multiple scale analyses (Jackson and Fahrig 133 2015). Our aim is to facilitate the use of these layers in a series of studies, within fields such as 134 landscape ecology (Beca et al. 2017, Regolin et al. 2017, Marjakangas et al. 2020, Monteiro et al. 135 2022), species distribution modeling (SDMs) (Ferro e Silva et al. 2018, Bertassoni et al. 2019, Santos 136 et al. 2020, 2022, Oshima et al. 2021, Tonetti et al. 2022), spatial prioritization (Tambosi et al. 2014, 137 Rosa et al. 2021, Iezzi et al. 2022, Tonetti et al. 2023) and habitat restoration (Melo et al. 2013, Pinto 138 et al. 2014, 2014, Zwiener et al. 2017, Lopes et al. 2022, Piffer et al. 2022, Schweizer et al. 2022, 139 Zupo et al. 2022, Bicudo da Silva et al. 2023). We hope this information enables the integration of 140 biodiversity and environmental data for the AF in ecological studies and expect it to be a common 141 reference to be used as a basis for landscape planning, biodiversity conservation and forest restoration 142 programs.

143	METADATA
144	Class I. Data set descriptors
145	A. Data set identity
146	Title: ATLANTIC SPATIAL: a data set of landscape, topographic, hydrologic and anthropogenic
147	metrics for the Atlantic Forests.
148	
149	B. Data set identification code
150	ATLANTIC_SPATIAL.csv
151	ATLANTIC_SPATIAL.zip
152	
153	C. Data set description
154	1. Originators
155	Maurício Humberto Vancine
156	Universidade Estadual Paulista (Unesp), Instituto de Biociências, Departamento de Biodiversidade,
157	Laboratório de Ecologia Espacial e Conservação, Rio Claro, SP, Brazil.
158	
159	Bernardo Brandão Niebuhr
160	Norwegian Institute for Nature Research (NINA), Oslo, Norway.
161	
162	Milton Cezar Ribeiro
163	Universidade Estadual Paulista (Unesp), Instituto de Biociências, Departamento de Biodiversidade,
164	Laboratório de Ecologia Espacial e Conservação, Rio Claro, SP, Brazil.
165	
166	2. Abstract
167	Space is one of the main drivers of biodiversity, once it regulates the underlying processes affecting
168	the distribution and dynamics of species. It is a fundamental factor in face of the rapid climate and
169	land use and land cover changes at local and global scales, which are linked to habitat loss and
170	fragmentation and their impacts on various organisms. The Atlantic Forest of South America (AF) is
171	among the global biodiversity hotspots because of its high species richness and endemism. Most of
172	the threats to the AF biodiversity is due to the expansion of urbanization and industry, extensive
173	agricultural and livestock production and mining. Here, we make available integrated and fine-scale
174	spatial information (resolution = 30 m) for the entire AF extent for the year 2020. The metrics consider
175	different vegetation classes (forest and forest plus other natural vegetation), effects of linear structure

(roads and railways) and multiple scales (radius buffer from 50 m to 2,500 m and up to 10 km for
some metrics). The entire data set is composed of 500 rasters and the AF delimitation vector, available

178 through the R package *atlanticr*, which we developed to facilitate the organization and acquisition of 179 the data. The metrics consists of land cover (31 classes), distance to grouped land cover classes (forest vegetation, natural vegetation, pasture, temporary crop, perennial crop, forest plantation, urban areas, 180 181 mining and water), a set of landscape, topographic and hydrologic metrics and anthropogenic 182 infrastructure. The landscape metrics include landscape morphology (classification as matrix, core, 183 edge, corridor, stepping stone, branch and perforation), fragment area and proportion, area and 184 number of patches, edge and core areas and proportion, structural and functional connectivity (for different organisms' gap-crossing capabilities), distance to fragment edges, fragment perimeter and 185 perimeter-area ratio and landscape diversity. Topographic metrics include elevation, slope, aspect, 186 curvatures and landform elements (peak, ridge, shoulder, spur, slope, hollow, footslope, valley, pit 187 188 and flat), hydrologic metrics comprise potential springs and its kernel and potential streams and 189 respective distances and anthropogenic infrastructure maps contain roads, railways, protected areas 190 and indigenous territories and the respective distance to each of them. These data sets will allow for 191 efficient integration of biodiversity and environmental data for the AF in future ecological studies, 192 and we expect it to be an important reference and data source for landscape planning, biodiversity 193 conservation and forest restoration programs.

194

195 **D. Keywords**

196 Tropical, hotspot, habitat loss, fragmentation, covariates, spatial, rainforest.

197

198 Class II. Research origin descriptors

- 199 A. Overall project description
- 200 **1. Identity**

A compilation of spatial covariates data of landscape, topographic, hydrologic and anthropogenic metrics for the entire AF at fine spatial resolution (30-m) for the year 2020.

203

204 **2. Originators**

- 205 The ATLANTIC SPATIAL project was coordinated by Maurício H. Vancine and Bernardo
- 206 Brandão Niebuhr at the São Paulo State University (UNESP), and the data set was assembled with
- 207 help from all the other authors. This is part of ATLANTIC SERIES, which is led by Mauro Galetti
- and Milton Ribeiro at the São Paulo State University (UNESP).
- 209

210 **3. Period of study**

- 211 Data were processed for the year 2020.
- 212

213 **4. Objectives**

- 214 The aim of this data paper was to provide a spatial covariates data set of landscape, topographic,
- 215 hydrologic and anthropogenic metrics for the entire Atlantic Forest (AF) at fine spatial resolution
- (30-m) for the year 2020.
- 217

218 **5. Abstract**

- 219 Same as above.
- 220

6. Sources of funding

222 The compilation of this data set was supported by São Paulo Research Foundation (FAPESP) grants

223 #2022/01899-6 (MVH), #2021/02132-8 (JEFO), #2020/11129-8 (EMZ), Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior (CAPES) grants fellowships 88887.513979/2020-00

- and 1588183 (MVH) and Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq)
- grants #130909/2020-3 (EMZ). BBN is supported by the Research Council of Norway (Grant
- 227 #287925) and by the NINA basic funding (Research Council of Norway, Grant #160022/F40).
- 228 RLM is supported by Bryce Carmine and Anne Carmine (née Percival), through the Massey
- 229 University Foundation. CHG is a research fellow of the National Council for Scientific and
- 230 Technological Development CNPq (grant #311209/2021-1). MCR was supported by FAPESP
- 231 (processes #2013/50421-2, #2020/01779-5, #2021/08322-3, #2021/08534-0, #2021/10195-0,
- 232 #2021/10639-5, #2022/10760-1) and CNPq (processes #442147/2020-1, #440145/2022-8,
- 233 #402765/2021-4, #313016/2021-6, #440145/2022-8) and São Paulo State University UNESP for
- their financial support. This study was financed in part by CAPES Brazil Finance Code 001. This
- study is also part of the Center for Research on Biodiversity Dynamics and Climate Change, whichis financed by FAPESP.
- 237

238 B. Specific subproject description

1. Site description

AF extends from 3°S to 33°S, and from 35°W to 58°W with ~163 Mha, covering coastal and inland

241 portions of Brazil, Argentina and Paraguay (Marques et al., 2021) (Figure 1). Due to this large

- 242 extension, the AF boundaries create important ecotones with other vegetation domains such as
- 243 Cerrado, Caatinga, Chaco and Pampa (Marques et al., 2021). The vegetation from AF is a complex
- 244 mosaic composed of five main vegetation types—Dense Ombrophilous, Open Ombrophilous,
- 245 Mixed Ombrophilous, Semideciduous Seasonal and Deciduous Seasonal (Joly et al., 2014).
- Additionally, the AF also includes mangroves and coastal scrub vegetation (Marques et al., 2021).
- 247 Furthermore, there are many associated ecosystems such as altitude grasslands (*campos rupestres*

- and *campos de altitude*), oceanic islands, beaches, rocky shores, dunes, marshes, inland swamps
 and mountain forest (*brejos de altitude*) in the Northeast region (Scarano, 2002).
- 250
- 251 **2. Experimental or sampling design**
- 252 None.
- 253

3. Research methods

255

256 Atlantic Forest delimitation

257 We used the integrative AF delimitation adapted from Muylaert et al. (2018), a general 258 delimitation encompassing the main proposed delimitations across several associated ecosystems 259 (Muylaert et al. 2018, Cunha et al. 2019, Margues et al. 2021). We adapted this delimitation by 260 merging the following original maps and most recent ones: 1. AF delimitation defined by Brazilian 261 legislation (Federal Decree No. 750/93 and Atlantic Forest Law No. 11,428/2006) named Atlantic 262 Forest Law by IBGE (2018); 2. AF limit defined by (Da Silva and Casteleti 2003); 3. AF delimitation defined by IBGE (2004); 4. AF most recent delimitation defined by IBGE (2019) and; 263 5. AF delimitation defined by (Dinerstein et al. 2017) and used in the Ecoregions 2017[®] 264 (https://ecoregions.appspot.com). Finally, we adjusted the resulting delimitation for the coastal 265 areas using the Brazilian territorial delimitation from IBGE (https://www.ibge.gov.br) for 2021, to 266 align the limit considering the most current delimitations of mangrove, dunes and sandy coastal 267 268 plain vegetation (restinga) (Scarano 2002). The final delimitation has an area total of 162,742,129 ha, that covers 3653 municipalities from 18 Brazilian states (151,470,253 ha, 93.07%), and parts of 269 270 Argentina (2,668,855 ha, 1.64%) and Paraguay (8,603,022 ha, 5.29%) (Figure 1).

271

272

273 Figure 1. Integrative Atlantic Forest delimitation, adapted from (Muylaert et al. 2018).

- 274
- 275 Raster resolution and coordinate system

All geospatial data sets were rasterized or adjusted the raster resolution to 30 m (~1.8 billion cells with values). All rasters were reprojected to Albers Conical Equal Area Brazil (SIRGAS 2000) (https://spatialreference.org/ref/sr-org/albers-conical-equal-area-brazil-sirgas-2000) and are therefore presented in meters.

280

281 Land use and land cover data

282 We compiled Land Use and Land Cover (LULC) maps from MapBiomas Brazil collection 7 283 (https://mapbiomas.org) **MapBiomas** and Bosque Atlántico collection 2 284 (https://bosqueatlantico.mapbiomas.org) (Souza et al. 2020). These data sets reconstruct annual 285 LULC information at the 30-m spatial resolution from 1985 to 2021, based on a pixel-based random forest classifier of Landsat satellite images processed through Google Earth Engine, and with 286 posterior accuracy of 89.8% for the AF (Souza et al. 2020). We considered the LULCs map for 2020 287 288 to provide the most recent data that included data validation for the previous year (2019) and 289 subsequent year (2021), guaranteeing better accuracy for the LULC classes.

290

Figure 2. Data framework used to summarize land use land cover (LULC) classes into

Atlantic Forest habitat types. (a) The LULC classes refer to MapBiomas in the AF (Brazil,

Argentina and Paraguay). (b) Grouped land cover classes. (c) Two vegetation classes were 297 considered as habitat to calculate the landscape metrics. MapBiomas classes are presented in Table

298

1.

299

300 The LULC map from MapBiomas consists of a map with 31 classes (Table 1; Figure 2a). To 301 calculate the distance from land cover classes metrics, we grouped the classes into seven broad 302 categories: pasture, temporary crop, perennial crop, forest plantation, urban areas, mining and water 303 (Table 1; Figure 2b). For the landscape metrics, we defined two vegetation classes for analysis: 304 "Forest Vegetation" (FV), selecting the land cover classes of "Forest" and "Natural Vegetation" 305 (NV), selecting the land cover classes of "Forest" and "Non-Forest Natural Formation" (Table 1; 306 Figure 2c). The only exception for landscape metrics was heterogeneity, for which we used all 31 307 classes in the calculation.

308

Table 1. Land use and land cover classes grouped as vegetation classes. The Atlantic Forest spatial maps were based on MapBiomas collection 7.

Land use and land cover class	MapBiomas class code	Grouped land cover classes	Vegetation class		
Not specified	0	Not used	Not used		
Forest Formation	3	Forest vegetation	Forest vegetation (FV) and Natural vegetation (NV)		
Savanna Formation	4 Natural vegetation		Natural vegetation (NV)		
Mangrove	5	Forest vegetation	Forest vegetation (FV) and Natural vegetation (NV)		
Forest Plantation	9	Forest plantation	Not used		
Wetland	11	Natural vegetation	Natural vegetation (NV)		
Grassland	12	Natural vegetation	Natural vegetation (NV)		
Other non-Forest Formations	13	Natural vegetation	Natural vegetation (NV)		
Pasture	15	Pasture	Not used		
Temporary Crop	19	Temporary crop	Not used		
Sugar cane	20	Temporary crop	Not used		

Mosaic of Uses	21	Not used	Not used		
Non vegetated area	22	Not used	Not used		
Beach, Dune and Sand Spot	23	Not used	Not used		
Urban Area	24	Urban area	Not used		
Other non-Vegetated Areas	25	Not used	Not used		
Rocky Outcrop	29	Not used	Not used		
Mining	30	Mining	Not used		
Aquaculture	31	Not used	Not used		
Salt Flat	32	Natural vegetation	Natural vegetation (NV)		
River, Lake and Ocean	33	Water	Not used		
Perennial Crop	36	Perennial crop	Not used		
Soybean	39	Temporary crop	Not used		
Rice	40	Temporary crop	Not used		
Other Temporary Crops	41	Temporary crop	Not used		
Coffee	46	Perennial crop	Not used		
Citrus	47	Perennial crop	Not used		
Other Perennial Crops	48	Perennial crop	Not used		
Wooded Sandbank Vegetation	49	Forest vegetation	Forest vegetation (FV) and Natural vegetation (NV)		
Herbaceous Sandbank Vegetation	50	Natural vegetation	Natural vegetation (NV)		
Cotton	62	Temporary crop	Not used		

312 We used linear infrastructure (roads and railways) to trim FV and NV areas overlapping 313 with these structures. This way we avoided overestimating large fragments, since roads can 314 decrease the connectivity of large patches (Martinez Pardo et al. 2023) and for different taxa 315 (Cassimiro et al. 2023). Roads and railways data were downloaded from official geospatial 316 databases for the three countries: Brazil (Instituto Brasileiro de Geografia e Estatística – IBGE; 317 IBGE, 2021; https://www.ibge.gov.br), Argentina (Instituto Geográfico Nacional - IGN; IGN, 318 2022; https://www.ign.gob.ar) and Paraguay (Instituto Nacional de Estadística – INE; INE, 2022; 319 https://www.ine.gov.py). The data summed 14,072 km of railways and 125,483 km of roads, with a 320 total of 139,554 km (Fig. 3). We did not find official railway data for Paraguay, so there may be an 321 underestimation of this effect for this country. For Brazil, we selected paved, operational and 322 constructed roads, and railways that were selected by relative surface position and train section for 323 2021. For Argentina, we consider national and provincial roads paved for the year of 2021. For 324 Paraguay, we only considered the main roads (according to the Atlas nomenclature) for the year 325 2012, without making a distinction regarding the paving of roads, since this information was not 326 available. The road and railway layers were rasterized using a parameter that creates densified lines, 327 i.e., all cells touched by the line were included as data for rasterization, which implied in more 328 densified lines. This guaranteed that the roads and railways would trim the fragments. After the lines were rasterized, the resulting raster covered 528,983 ha (0.33% from the AF delimitation). We 329 330 trimmed the fragments of vegetation from the rasterized data generated (Vancine et al. 2023). 331

- Figure 3. Linear infrastructure (roads and railways) network used to trim the forest
 vegetation (FV) and native vegetation (NV) fragments within the Atlantic Forest.
 Urban areas for Brazil were selected from MapBiomas. For Argentina, this data was
 downloaded from Instituto Geográfico Nacional (Instituto Geográfico Nacional IGN,
 <u>https://www.ign.gob.ar</u>) and for Paraguay from Instituto Nacional de Estadística (Instituto Nacional
 de Estadística INE, <u>https://www.ine.gov.py</u>) (Fig. 4), and covered 2,401,850 ha (1.48% from the
 AF limit).
- 341

342

343 **Figure 4. Urban areas within the Atlantic Forest.**

344

345 Protected areas and indigenous territories

The limits of the protected areas (PA) were downloaded from Protected Planet (UNEP-WCMC and IUCN, 2022, <u>www.protectedplanet.net</u>) for the IUCN categories of protected areas ("Ia", "Ib", "II", "III" and "IV"), which comprises 986 reserves (4,620,245 ha; 2.84% from AF limit) (Fig. 5a). These IUCN categories encompass the following protection categories of the

350 Argentina (Municipal Nature Park, National Park, Nature Monument, Private Refuge, Private

351 Wildlife Refuge, Provincial Park, Strict Nature Reserve, Wilderness Nature Reserve and Wildlife

- 352 Reserve), Brazil (Area of Relevant Ecological Interest, Biological Reserve, Ecological Station,
- 353 Natural Heritage Private Reserve, Natural Monument, Park, Ramsar Site, Wetland of International

- 354 Importance, Wildlife Refuge) and Paraguay (National Park, Natural Private Reserve, Natural
- 355 Reserve, Scientific Monument and Scientific Reserve). Indigenous territories (IT) for Brazil were
- 356 downloaded from Fundação Nacional dos Povos Indígenas (Fundação Nacional dos Povos
- 357 Indígenas, 2020, <u>https://www.gov.br/funai/pt-br</u>) selecting only "Homologated", and for Paraguay
- 358 from Tierras Indígenas (Tierras Indígenas, 2022, <u>https://www.tierrasindigenas.org</u>), which
- comprises 1023 territories (1,324,973 ha; 0.81% from AF limit) (Fig. 5b).
- 360

362 Figure 5. Protected areas (PA) (a) and indigenous territories (IT) (b) within the Atlantic

Forest.

364

361

365 Topography data

Topographic metrics were calculated from FABDEM v1.2 (forest and buildings removed
Copernicus DEM), an elevation raster map that used machine learning to remove buildings and tree
height biases from the Copernicus GLO 30 Digital Elevation Model (DEM) (Hawker et al. 2022)
(Figure 6).

370

371

372 Figure 6. Elevation (meters above sea level) from FABDEM v1.2 across the Atlantic Forest.

- 373
- 374 Data set source description
- Table 2 summarizes all the sources and descriptions of spatial information used to integrate
 spatial variables presented in the ATLANTIC SPATIAL data set.
- 377

Table 2. Source and description of spatial information.

Type of information	Institution	Description
Land Use and Land Cover	MapBiomas	Annual LULC information at
(LULC)		the 30-m spatial resolution from
		1985 to 2021, based on pixel-
		based random forest classifier
		of Landsat satellite images
		using Google Earth Engine.
		Source: Souza et al. (2020)
		Site: <u>https://mapbiomas.org</u>

Roads and railways	Instituto Brasileiro de	Continuous Cartographic Base
	Geografia e Estatística (IBGE)	of Brazil, 1:250,000.
	Instituto Geográfico Nacional	Catalog of Geographical
	(IGN)	Objects of the Organism and
		forms part of the Institutional
	Instituto Nacional de	Geospatial Database.
	Estadística (INE)	
		Digital Cartography 2012,
		Directorate General of
		Statistics, Surveys and
		Censuses and is merely
		referential.
		Sources: Instituto Brasileiro de
		Geografia e Estatística (IBGE);
		Instituto Geográfico Nacional
		(IGN); and Instituto Nacional
		de Estadística (INE)
		Sites: https://www.ibge.gov.br;
		https://www.ign.gob.ar; and
		https://www.ine.gov.py
Urban areas	MapBiomas	Annual LULC information at
	-	the 30-m spatial resolution from
	Instituto Geográfico Nacional	1985 to 2021, based on pixel-
	(IGN)	based random forest classifier
		of Landsat satellite images
	Instituto Nacional de	using Google Earth Engine.
	Estadística (INE)	
		Catalog of Geographical
		Objects of the Organism and
		forms part of the Institutional
		Geospatial Database.
		Digital Cartography 2012
		Directorate General of
		Statistics Surveys and
		Censuses and is merely
		referential

		Sources: Souza et al. (2020), Instituto Geográfico Nacional (IGN) and Instituto Nacional de Estadística (INE) Sites: <u>https://mapbiomas.org</u> , <u>https://www.ign.gob.ar</u> and <u>https://www.ine.gov.py</u>
Protected areas	Protected Planet	Up-to-date and complete source of data on protected areas and other effective area-based conservation measures, updated monthly with submissions from governments, non- governmental organizations, landowners and communities. Source: Protected Planet Site: <u>www.protectedplanet.net</u>
Indigenous territories	Fundação Nacional dos Povos	Official indigenist body of the
	Indígenas (FUNAI)	Brazilian State, which promotes
		studies of identification,
	Tierras Indígenas	delimitation, demarcation, land
		regularization and registration
		of lands occupied by
		indigenous peoples, in addition
		to monitoring and inspecting
		indigenous lands.
		Interactive online platform that
		provides accurate maps and
		critical information on the lands
		and territories of indigenous
		peoples and communities in
		Paraguay.

		Sources: FUNAI and Tierras
		Indígenas
		Sites:
		https://www.gov.br/funai/pt-br
		and
		https://www.tierrasindigenas.or
		g
Topography	Forest and Buildings Removed	Elevation raster map that used
	Copernicus DEM (FABDEM)	machine learning to remove
	v1.2	building and tree height biases
		from the Copernicus GLO 30
		Digital Elevation Model (DEM)
		Source: Hawker et al. (2022)
		Site:
		https://www.fathom.global/prod
		<u>uct/fabdem</u>

Landscape metrics

We calculated 39 landscape metrics of nine types (Table 3) based on the habitat map (binary habitat/non-habitat map, Figure 2c) of FV and NV and multi-class map (31 classes, Figure 2a). The values of the landscape metrics were spatialized to the cells. The metrics derived from FV and NV were based on data trimmed by linear structure (roads and railways). Here, to exemplify the method used for calculating of landscape metrics, we display two toy landscapes (Fletcher and Fortin 2018): a binary raster and a multi-class raster (Figure 7).

385

Toy landscapes (Figure 7): two raster layers (16×16 cells with spatial resolution of 100 m). Cells of the toy landscape (binary) were filled with 0 and 1 values, where 0 represents not-habitat and 1 represents habitat. For the toy landscape (multi-class), cells were filled with values from 0 to 5, where each value represents a different LULC class.

390

	Toy landscape (binary)												То	y la	anc	lsc	ap	e (r	nu	lti-o	clas	ss)										
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1		2	2	2	2	3	3	3	3	3	5	5	5	5	1	1	1
0	1	1	1	0	0	0	1	1	1	1	0	0	1	1	1		2	1	1	1	3	3	3	1	1	1	1	5	5	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1		2	1	1	1	1	1	1	1	1	1	1	1	5	1	1	1
0	1	1	1	0	0	0	1	1	1	1	0	0	0	0	0		2	1	1	1	0	0	0	1	1	1	1	5	5	5	5	5
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	2	2	0	0	0	0	4	3	3	3	4	4	4	4	4
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		2	2	2	0	0	0	0	4	3	3	3	3	4	4	4	4
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		2	2	2	0	0	0	4	4	3	3	3	4	4	4	4	4
1	1	1	1	1	1	0	0	1	0	0	0	1	1	1	1		1	1	1	1	1	1	2	2	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	1	0	0	0	1	1	1	1		1	1	1	1	1	1	2	2	1	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	0	0	0	0	1	1	1	1		1	5	5	5	1	1	2	2	4	0	0	0	1	1	1	1
1	0	0	0	1	0	0	0	0	0	0	1	1	1	0	1		1	5	5	5	1	2	2	2	4	0	0	1	1	1	5	1
1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1		1	1	1	1	1	2	2	2	4	4	1	1	1	1	1	1
1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1		1	1	1	1	1	3	3	3	4	4	4	4	1	1	1	1
1	1	1	1	1	1	1	0	0	0	0	0	1	1	1	1		1	1	1	1	1	1	1	3	5	5	5	5	1	1	1	1
1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1		1	1	1	1	1	5	3	3	5	5	4	4	1	1	1	1
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0]	5	5	5	5	5	5	3	3	5	1	4	4	4	4	4	4

Figure 7. Toy landscapes. Toy landscape (binary, on the left) has 0 and 1 values (non-

393 habitat/habitat) and toy landscape (multi-class, on the right) has values from 0 to 5 (land cover

- 394 classes). Each cell has 100 m of resolution.

- **T**11

Table 3. Landscape metrics used and their description. Edge depth is the minimum distance at which cells are classified as edges, those that are further away are classified as cores. Gap-crossing considers the ability of an organism to cross non-habitat gaps, characterizing the distance to functional connectivity. Scale is the radius of the buffer to which the moving window is rotated to impute the effect of different scales on landscape metrics.

Metric	Metric type	Short description	Values	Edge depth (in meters)	Gap-crossing (in meters)	Scale (buffer radius in meters)	Reference
1. Fragment ID	Fragment	Fragment identification (cells clumped in its vicinity, considering the 8 neighboring cells)	Units	None	None	None	McGarigal et al. (2023)
2. Fragment area	Fragment	Fragment area (sum of the area of all cells belonging to each fragment ID)	Hectares	None	None	None	McGarigal et al. (2023)
3. Percentage of fragments	Fragment	Percentage of fragments in the vicinity (average neighborhood values for different buffer sizes)	0 to 100	None	None	50, 100, 150, 200, 250, 500, 750, 1000, 1500, 2000, 2500, 5000, 7500, 10000	McGarigal et al. (2023)

Metric	Metric type	Short description	Values	Edge depth (in meters)	Gap-crossing (in meters)	Scale (buffer radius in meters)	Reference
4. Patch ID	Patch	Patch identification (cells clumped in its vicinity, considering the 8 neighboring cells), discarding branches and corridors	Units	30	None	None	McGarigal et al. (2023)
5. Patch area	Patch	Patch area (sum of the area of all cells belonging to each patch ID), discarding branches and corridors	Hectares	30	None	None	McGarigal et al. (2023)
6. Patch area original	Patch	Patch area assigned to the original fragment. Here each cell of a fragment will be assigned the value of the sum of the areas of all patches contained in the	Hectares	30	None	None	McGarigal et al. (2023)

Metric	Metric type	Short description	Values	Edge depth (in meters)	Gap-crossing (in meters)	Scale (buffer radius in meters)	Reference
		fragment					
7. Number of patches	Patch	Number of patches (number of patch ID within a fragment) assigned to the original fragment. Here each cell of a fragment will be assigned the value number of patches contained in the fragment	Units	30	None	None	McGarigal et al. (2023)
8. Morphology	Morphology	Identifies landscape morphologies: matrix (0), core (1), edge (2), corridor (3), stepping stone (4), branch (5) and perforation (6)	0 to 6	30	None	None	Soille and Vogt (2009)
9. Matrix	Morphology	Identify matrix	0 and 1	30	None	None	Soille and Vogt

Metric	Metric type	Short description	Values	Edge depth (in meters)	Gap-crossing (in meters)	Scale (buffer radius in meters)	Reference
		(non-habitat cells = 1)					(2009)
10. Core	Morphology	Identify fragment cores (core cells = 1)	0 and 1	30	None	None	Soille and Vogt (2009)
11. Edge	Morphology	Identify fragment edges (external edge cells = 1)	0 and 1	30	None	None	Soille and Vogt (2009)
12. Corridor	Morphology	Identify corridors (linear elements that connect core cells = 1)	0 and 1	30	None	None	Soille and Vogt (2009)
13. Branch	Morphology	Identify branches (linear elements that do not connect core cells = 1)	0 and 1	30	None	None	Soille and Vogt (2009)
14. Stepping stone	Morphology	Identify stepping stones (isolated small elements without core cells = 1)	0 and 1	30	None	None	Soille and Vogt (2009)

Metric	Metric type	Short description	Values	Edge depth (in meters)	Gap-crossing (in meters)	Scale (buffer radius in meters)	Reference
15. Perforation	Morphology	Identify perforations (edge that compose the internal edge of a fragment = 1)	0 and 1	30	None	None	Soille and Vogt (2009)
16. Core	Core and edge	Identify core cells (core = 1)	0 and 1	30, 60, 90, 120, 240	None	None	McGarigal et al. (2023)
17. Core ID	Core and edge	Core identification (core cells clumped in its vicinity, considering the 8 neighboring cells)	Units	30, 60, 90, 120, 240	None	None	McGarigal et al. (2023)
18. Core area	Core and edge	Core area (sum of the area of all core cells belonging to that core ID)	Hectares	30, 60, 90, 120, 240	None	None	McGarigal et al. (2023)
19. Core area original	Core and edge	Core area assigned to the original fragment. Here each cell of a	Hectares	30, 60, 90, 120, 240	None	None	McGarigal et al. (2023)

Metric	Metric type	Short description	Values	Edge depth (in meters)	Gap-crossing (in meters)	Scale (buffer radius in meters)	Reference
		fragment will be assigned the value total area of all cores contained in the fragment					
20. Number of cores	Core and edge	Number of cores within a fragment. Here each cell of a fragment will be assigned the value number of cores contained in the fragment	Units	30, 60, 90, 120, 240	None	None	McGarigal et al. (2023)
21. Edge	Core and edge	Identify edge cells (edge = 1). This includes both external and internal edges (perforations)	0 and 1	30, 60, 90, 120, 240	None	None	McGarigal et al. (2023)
22. Edge ID	Core and edge	Edge identification (cells clumped in its vicinity, considering the	Units	30, 60, 90, 120, 240	None	None	McGarigal et al. (2023)

Metric	Metric type	Short description	Values	Edge depth (in meters)	Gap-crossing (in meters)	Scale (buffer radius in meters)	Reference
		8 neighboring cells)					
23. Edge area	Core and edge	Edge area (sum of the area of all edge cells belonging to that edge ID)	Hectares	30, 60, 90, 120, 240	None	None	McGarigal et al. (2023)
24. Edge area original	Core and edge	Edge area assigned to the original fragment. Here each cell of a fragment will be assigned the value total area edge in the fragment	Hectares	30, 60, 90, 120, 240	None	None	McGarigal et al. (2023)
25. Percentage of core	Core and edge	Percentage of core cells within the vicinity (average neighborhood values for different buffer sizes)	0 to 100	30, 60, 90, 120, 240	None	50, 100, 150, 200, 250, 500, 750, 1000, 1500, 2000, 2500	McGarigal et al. (2023)
26. Percentage of edges	Core and edge	Percentage of edge cells in the	0 to 100	30, 60, 90, 120, 240	None	50, 100, 150, 200, 250, 500,	McGarigal et al. (2023)

Metric	Metric type	Short description	Values	Edge depth (in meters)	Gap-crossing (in meters)	Scale (buffer radius in meters)	Reference
		vicinity (average neighborhood values for different buffer sizes)				750, 1000, 1500, 2000, 2500	
27. Perimeter	Perimeter	Perimeter (number of cells sides of a fragment facing the matrix, including any internal holes)	Meters	30	None	None	McGarigal et al. (2023)
28. Perimeter- area ratio	Perimeter	Perimeter-area ratio (ratio between fragment perimeter and fragment area)	0 to infinity	30	None	None	McGarigal et al. (2023)
29. Distance inside	Distance	Euclidean distance to the nearest fragment edge cell, inside the fragment	Meters	None	None	None	Ribeiro et al. (2009)
30. Distance outside	Distance	Euclidean distance to the nearest fragment	Meters	None	None	None	Ribeiro et al. (2009)

Metric	Metric type	Short description	Values	Edge depth (in meters)	Gap-crossing (in meters)	Scale (buffer radius in meters)	Reference
		edge cell, outside the fragment					
31. Distance	Distance	Euclidean distance to the nearest fragment edge cell, both inside (negative) and outside (positive) the fragment	Meters	None	None	None	Ribeiro et al. (2009)
32. Structural connectivity	Structural connectivity	Structural connectivity (represents the area of habitat structurally connected to a patch, taking into account corridors, branches and possibly other patches, but disregarding the area of the own patch)	Hectares	30	None	None	Ribeiro et al. (2009)
33. Structurally	Structural	Structurally	Hectares	30	None	None	Ribeiro et al.

Metric	Metric type	Short description	Values	Edge depth (in meters)	Gap-crossing (in meters)	Scale (buffer radius in meters)	Reference
connected area	connectivity	connected area (calculated from the original fragment, where the structural connectivity of the patches was associated with the fragment)					(2009)
34. Functionally connected dilation	Functional connectivity	Functionally connected dilation (fragments dilate by half the value of the organism's gap- crossing capacity)	Hectares	None	60, 120, 180, 240, 300, 600	None	Ribeiro et al. (2009)
35. Functionally connected ID	Functional connectivity	Functionally connected identification (fragments that are at the shortest distance from the gap- crossing are grouped, receiving the	Hectares	None	60, 120, 180, 240, 300, 600	None	Ribeiro et al. (2009)

Metric	Metric type	Short description	Values	Edge depth (in meters)	Gap-crossing (in meters)	Scale (buffer radius in meters)	Reference
		same ID)					
36. Functionally connected area	Functional connectivity	Functionally connected area (area of these fragments with the same ID was summed)	Hectares	None	60, 120, 180, 240, 300, 600	None	Ribeiro et al. (2009)
37. Functional connectivity	Functional connectivity	Functional connectivity (difference between the functionally connected area and the fragment size)	Hectares	None	60, 120, 180, 240, 300, 600	None	Ribeiro et al. (2009)
38. Landscape Shannon diversity	Landscape diversity	Landscape Shannon diversity (consider the number of classes in each class cell within the window of analysis for Shannon index)	0 to infinity	None	None	50, 100, 150, 200, 250, 500, 750, 1000, 1500, 2000	Rocchini et al. (2013)
39. Landscape Simpson	Landscape diversity	Landscape Simpson	0 to 1	None	None	50, 100, 150, 200, 250, 500,	Rocchini et al. (2013)

Metric	Metric type	Short description	Values	Edge depth (in meters)	Gap-crossing (in meters)	Scale (buffer radius in meters)	Reference
diversity		diversity (consider the number of classes in each class cell within the window of analysis for Shannon index)				750, 1000, 1500, 2000	

Fragment area metrics (Figure 8): considering a binary habitat map, all cells of habitat were clumped with other cells of habitat in its vicinity (considering the 8 neighboring cells). Each clump of habitat was called a fragment and was given an ID (**Metric 1: Fragment ID**). For each fragment ID, its area (**Metric 2: Fragment area**) was calculated as the sum of the area of all cells belonging to that fragment ID. The unit used to calculate the area is hectares. Non-habitat cells are returned as NULL values.

Figure 8. Fragment area metrics. Metric 1: Fragment ID is the fragment identification. Metric 2: Fragment area (ha) is the fragment area calculated in hectares. Each cell has 100 m of side length in the toy landscape.

Percentage of fragments metric (Figure 9): considering a binary habitat map, each cell of the map presented a value of the percentage of fragments within a circular window with a given size, centered in the focal cell (amount of habitat cells/total number of cells in the window). It varies between 0% and 100% (**Metric 3: Percentage of fragments**). Buffer radius represented half the size of a circular window, e.g., for a buffer size of 50 m, the window size was 100 m. Buffer radii used: 50 m, 100 m, 150 m, 200 m, 250 m, 500 m, 750 m, 1,000 m, 1,500 m, 2,000 m, 2,500 m, 5,000 m, 7,500 m, 10,000 m.

		-					, - .		3	,		۰,۰	/		
0	25	25	25	0	0	0	25	25	25	25	0	25	75	100	100
25	60	80	60	40	20	40	60	80	80	60	40	20	80	100	100
25	80	100	100	60	60	60	100	100	100	100	40	40	60	80	75
25	60	80	60	40	20	40	60	80	80	60	40	0	20	20	25
0	20	20	20	0	0	0	20	20	20	20	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25	20	20	20	20	20	0	0	20	0	0	0	20	20	20	25
75	80	80	80	80	60	20	20	40	20	0	20	60	80	80	75
100	80	80	80	100	80	20	20	40	20	0	20	80	100	100	100
75	40	20	40	80	60	20	0	20	0	0	40	80	100	80	100
75	40	20	40	60	40	0	0	0	0	40	60	100	80	80	75
100	80	80	80	80	20	0	0	0	20	40	80	100	100	80	100
100	100	100	100	80	40	20	0	0	0	20	40	80	100	100	100
100	100	100	100	100	60	40	20	0	0	0	20	80	100	100	100
75	80	80	80	60	40	20	0	0	20	0	20	60	80	80	75
33	25	25	25	25	0	0	0	25	25	25	0	25	25	25	33

3. Percentage of fragment (%)

Figure 9. Percentage of fragments metric. Metric 3: fragment percentage for a buffer radius of 100 m (i.e., a circular window with 200 m size), as illustration in the toy landscape.

Patch area metrics (Figure 10): considering a binary habitat map, these metrics are equivalent to the fragment area metric, but discards habitat branches and corridors that are closer than a given edge depth from the edge between the fragment and the matrix. The result is a map of clusters (considering the 8 neighboring cells) of cells, which does not consider corridors or branches. Each habitat cluster was called a patch and given an ID (**Metric 4: Patch ID**). For each patch ID, its area (**Metric 5: Patch area**) was calculated as the sum of the area of all cells belonging to that patch ID. The patch area has also been attributed to the original fragment ID, which sums the area of all patches belonging to the same fragment (**Metric 6: Patch area original**). The amount of different patch IDs for a fragment is also calculated (**Metric 7: Number of patches**). Edge depths considered: 30 m. The unit used to calculate the area was hectares. Non-habitat cells were assigned with NULL values.

Figure 10. Patch area metrics. Metric 4: Patch ID is the patch identification. Metric 5: Patch area (ha) is the patch area in hectares. Metric 6: Patch area original (ha) is the patch area for the original fragment in hectares. Metric 7: Number of patches is the number of patches for the original fragment. The edge depth was chosen as 50 m in this illustrative example in the toy landscape.

4. Morphological metrics (Figure 11): considering a binary habitat map, these metrics classify the landscape as a set of morphological/structural categories (**Metric 8: Morphology**), i.e., whether a cell is matrix, core, edge, corridor, branch, stepping stone or perforation. This classification is made by considering an edge depth to distinguish what if the edge and the core of a habitat fragment. Matrices are the non-habitat cells from the binary map (**Metric 9: Matrix**). Cores are habitat cells after removing the edge cells (**Metric 10: Core**). Edges are habitat cells that are closer to the edge

than the chosen edge depth, but are not corridor, branch, stepping stone or perforation (**Metric 11: Edge**). Corridors are edge cells that connect two or more core cells (**Metric 12: Corridor**). Branches are edge cells that do not connect cores (**Metric 13: Branch**). Stepping stones are edge cells that do not have core cells inside them (**Metric 14: Stepping stone**). Perforations are edge cells that compose the internal edge of a fragment (**Metric 15: Perforation**). Edge depths considered: 30 m.

					0.	. IVI	orp	0110	106	I Y					
0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	1
0	2	2	2	0	0	0	2	2	2	2	0	0	2	1	1
0	2	1	3	3	3	3	3	1	1	4	4	0	2	2	2
0	2	2	2	0	0	0	2	2	2	2	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2	2	2	2	2	0	0	5	0	0	0	2	2	2	2
6	6	6	6	6	2	0	0	5	0	0	0	2	1	1	1
6	0	0	0	6	2	0	0	0	0	0	0	2	6	6	6
6	0	0	0	6	0	0	0	0	0	0	4	4	6	0	6
6	6	6	6	6	0	0	0	0	0	4	4	4	6	6	6
1	1	1	1	2	0	0	0	0	0	0	0	2	1	1	1
1	1	1	1	4	4	4	0	0	0	0	0	2	1	1	1
2	2	2	2	2	0	0	0	0	0	0	0	2	2	2	2
0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0

8. Morphology

						9	. M	atri	ix						
1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
1	0	0	0	1	1	1	0	0	0	0	1	1	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	1	1	1	0	0	0	0	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	1	1	0	1	1	1	0	0	0	0
0	0	0	0	0	0	1	1	0	1	1	1	0	0	0	0
0	1	1	1	0	0	1	1	1	1	1	1	0	0	0	0
0	1	1	1	0	1	1	1	1	1	1	0	0	0	1	0
0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1

10. Core															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	1	1	1
1	1	1	1	0	0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

11. Edge

								-ug							
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	1	1	1	0	0	0	1	1	1	1	0	0	1	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1
0	1	1	1	0	0	0	1	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
						12.			uu						
---	---	---	---	---	---	-----	---	---	----	---	---				
0	0	0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0	0	0				
	-	-							-						

12 Corridor

0 0 0 0

	_							_							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

12 Branch

						10	. ם	an	CII						
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

14. Stepping stone

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

15. Perforation

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0	0	1	1	1
1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1
1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 11. Morphological metrics. Metric 8: Landscape morphologies: matrix (0), core (1), edge (2), corridor (3), stepping stone (4), branch (5) and perforation (6). Metric 9: matrix = non-habitat cells. Metric 10: Core = habitat cells, removing the edge cells. Metric 11: Edge = habitat cells which are closer to the habitat edge than the chosen edge depth. Metric 12: Corridor = edge cells that connect two or more core cells. Metric 13: Branch = edge cells that do not connect cores. Metric 14: Stepping stone = edge cells that do not have core cells. Metric 15: Perforation = edge cells that compose the internal edge of a fragment. The edge depth used in this illustrative figure was 50 m.

Core and edge area metrics (Figure 12): considering a binary habitat map, these metrics classify cells in core or edge, considering a depth of edge. Cells that are closer (or at the same distance) from the edge than the edge depth are classified as edges, those that are further away inside the habitat patches are classified as core. We clumped the core and edge cells (considering the 8 neighboring cells; Metric 16: Core and Metric 21: Edge) and gave it an ID (Metric 17: Core ID and Metric 22: Edge ID). For each core and edge ID, its area was calculated as the sum of the area of all cells belonging to that core or edge ID (Metric 18: Core area and Metric 23: Edge area). We also calculated the area of a core or edge of the original fragment by summing the area of the core or edge cells belonging to a fragment (Metric 19: Core area original and Metric 24: Edge area original), and the number of cores (Metric 20: Number of cores), which was the number of different cores IDs for a fragment. Notice that the Metric 21 (Edge) differs from morphological classification of edges (Metric 11), because the latter subdivides edges cells into edges, corridors, branches, stepping stones and perforations. Metric 21 includes all these in a single category. Edge depths considered: 30 m, 60 m, 120 m, 240 m. The unit used to calculate the area was hectares. Non-habitat cells were assigned with NULL values, except for core and edge binary maps.

_							1	6. (loC	e						
Γ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
	0	0	1	0	0	0	0	0	1		0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	1		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1	1	0	0	0	0	0	0	0	0	0	1	1	1
					0	0	0	0	0	0	0	0	0	1		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

19. Core area original (ha)

20. Number of cores

21. Edge

0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	1	1	1	0	0	0	1	1	1	1	0	0	1	0	0
0	1	0	1	1	1	1	1	0	0	1	1	0	1	1	1
0	1	1	1	0	0	0	1	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	0	0	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	1	0	0	0	1	0	0	0
1	0	0	0	1	1	0	0	0	0	0	0	1	1	1	1
1	0	0	0	1	0	0	0	0	0	0	1	1	1	0	1
1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1
0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

23. Edge area (ha)

Figure 12. Edge and core area metrics. Metric 16: Core is the binary core and not-core. Metric 17: Core ID is the core identification. Metric 18: Core area (ha) is the core area in hectares. Metric 19: Core area original (ha) is the core area for the original fragment in hectares. Metric 20: Number of cores is the number of cores for the original fragment. Metric 21: Edge is the binary edge and not-edge. Metric 22: Edge ID is the edge identification. Metric 23: Edge area (ha) is the edge area in hectares. Metric 24: Edge area original (ha) is the edge area for the original fragment in hectares. Each cell of the toy landscape has 100 m of side length and the edge depth was chosen as 50 m in this illustrative example.

Percentage of core and edge metrics (Figure 13): considering a binary habitat map, each cell of the map presents a value of the proportion of core or edge area within a circle window with a given size, centered in the focal cell (amount of core or edge cells/total number of cells in the window). It varies between 0 and 100% (Metric 25: Percentage of core and Metric 26: Percentage of edges). Edge depths considered: 30 m, 60 m, 120 m, 240 m. Buffer radius represented half the size of a circular window, e.g., for a buffer size of 50 m, the window size was 100 m. Buffer radius used: 50 m, 100 m, 150 m, 200 m, 250 m, 500 m, 750 m, 1000 m, 1500 m, 2000 m, 2500 m.

	2	5. F	Per	cer	nta	ge	of	cor	'e (I	buf	fer	10	0 n	n)				26	6. F	Perc	cer	itag	ge o	of e	edg	e (bu	ffer	· 10)0 r	n)	
0	0	0	0	0	0	0	0	0	0	0	0	0	25	75	100		0	25	25	25	0	0	0	25	25	25	25	0	25	50	25	0
0	0	20	0	0	0	0	0	20	20	0	0	0	20	60	75	2	25	60	60	60	40	20	40	60	60	60	60	40	20	60	40	25
0	20	20	20	0	0	0	20	40	40	20	0	0	0	20	25	2	25	60	80	80	60	60	60	80	60	60	80	40	40	60	60	50
0	0	20	0	0	0	0	0	20	20	0	0	0	0	0	0	2	25	60	60	60	40	20	40	60	60	60	60	40	0	20	20	25
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	20	20	20	0	0	0	20	20	20	20	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	25	20	20	20	20	20	0	0	20	0	0	0	20	20	20	25
0	0	0	0	0	0	0	0	0	0	0	0	0	20	20	25	7	75	80	80	80	80	60	20	20	40	20	0	20	60	60	60	50
0	0	0	0	0	0	0	0	0	0	0	0	20	40	60	50	1	00	80	80	80	100	80	20	20	40	20	0	20	60	60	40	50
0	0	0	0	0	0	0	0	0	0	0	0	0	20	20	25	7	75	40	20	40	80	60	20	0	20	0	0	40	80	80	60	75
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	75	40	20	40	60	40	0	0	0	0	40	60	100	80	80	75
25	5 20	20	20	0	0	0	0	0	0	0	0	0	20	20	25	7	75	60	60	60	80	20	0	0	0	20	40	80	100	80	60	75
75	5 80	80	60	20	0	0	0	0	0	0	0	20	60	80	75	2	25	20	20	40	60	40	20	0	0	0	20	40	60	40	20	25
75	5 80	80	60	20	0	0	0	0	0	0	0	20	60	80	75	2	25	20	20	40	80	60	40	20	0	0	0	20	60	40	20	25
25	5 20	20	20	0	0	0	0	0	0	0	0	0	20	20	25	Ę	50	60	60	60	60	40	20	0	0	20	0	20	60	60	60	50
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	33	25	25	25	25	0	0	0	25	25	25	0	25	25	25	33

Figure 13. Percentage of core and edge metrics. Metric 25: Percentage of core and Metric 26: Percentage of edge for a circular window with 100 m size, as an illustrative example in the toy landscape.

Perimeter metrics (Figure 14): considering a binary habitat map, the perimeter is the number of cells sides of a fragment facing the matrix, including any internal holes, in meters (**Metric 27: Perimeter**). Perimeter-area ratio is the ratio between fragment perimeter and fragment area, without a measurement unit (**Metric 28: Perimeter-area ratio**). This is a simple measure of shape complexity, the higher its value, the greater the complexity of the fragment shape. A limitation in using this metric as a shape complexity index is that it varies with the area of the fragment. For example, holding shape constant, an increase in fragment area will cause a decrease in the perimeter-area ratio. Edge depths considered: 30 m. Non-habitat cells were assigned with NULL values.

Figure 14. Perimeter metrics. Metric 27: Perimeter (m) is the number of pixel sides of a fragment facing the matrix. Metric 28: Perimeter-area ratio is a shape complexity metric.

Distance metrics (Figure 15): considering a binary habitat map, these metrics are based on maps of Euclidean distance inside and outside from habitat edges, in meters. Each cell outside habitat (matrix, non-habitat) was given a positive value equal to the distance to the nearest habitat cell edge (Metric **29: Distance outside**). Cells inside habitat were given a negative value, corresponding to the distance to the nearest edge with matrix cells (Metric **30: Distance inside**). Inside and outside distances were combined in a metric by summing outside and inside distance metrics, only for FV and NV (Metric **31: Distance**).

				20.		Ju	110		131		····,				
0	0	0	0	0	0	0	0	0	0	0	0	0		-200	-300
0	-100			0	0	0					0	0		-200	-200
0		-200	-141				-141	-200	-200	-141		0			
0				0	0	0					0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-100						0	0		0	0	0				
-141				-141		0	0		0	0	0		-200	-200	-200
-100	0	0	0			0	0	0	0	0	0		-141		-141
-100	0	0	0		0	0	0	0	0	0		-141		0	
-141					0	0	0	0	0			-141	-141		-141
-224	-200	-200	-200		0	0	0	0	0	0	0		-200	-200	-224
-200	-200	-200	-200	-141			0	0	0	0	0		-200	-200	-200
-100					0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0		0	0	0	0	0	0

29. Distance inside (m)

30. Distance outside (m) 100 100 100 141 200 141 100 100 100 100 141 100 100 100 100 0 0 0 0 100 100 0 0 0 0 0 0 0 100 0 0 100 100 100 0 0 100 141 100 100 100 141 100 100 100 141 <mark>200</mark> 141 100 100 100 100 141 100 100 100 100 100 141 141 100 141 141 100 100 100 100 100 100 100 100 141 100 141 141 100 100 100 100 100 100 141 200 141 100 141 100 100 100 100 141 0 0 200 200 200

100 100 141 141 100 141 100

100 100 100 100 141 200 200 100 0 100 141 100 100 100 100

0 0

31. Distance (m)

0 0

0 0

Figure 15. Distance metrics. Metric 29: Distance inside (m) is the distance inside from habitat with negative values. Metric 30: Distance outside (m) is the outside distance from habitat with positive values. Metric 31: Distance (m) is the distance to habitat (FV and NV only) resulting from summing Distance inside (m) and Distance outside (m).

Structural connectivity metrics (Figure 16): considering a binary habitat map, these metrics represent the area of habitat structurally connected to a patch, considering corridors, branches and possibly other patches (if the corridor connects these patches). In practice, it is calculated as the difference between the fragment area and the patch area. When a patch has no corridors or branches, its structural connectivity equals zero (i.e., it is not structurally connected to any other habitat). Each

patch cell is assigned a structural connectivity value (Metric 32: Structural connectivity). The structural connected area was calculated from the original fragment, where the structural connectivity of the patches was associated with the fragment (Metric 33: Connected structural area). The definition of structural connectivity depends on what is considered patch, corridor and branch, so this metric depends on the edge depth value considered. For the AF the depth of the chosen edge was 30 m. The unit used to calculate the area was hectares. Non-habitat cells were assigned with NULL values.

Figure 16. Structural connectivity metrics. Metric 32: Structural connectivity (ha) is the area of habitat structurally connected to a patch only for patches in hectares. Metric 33: Structural connected area (ha) is the area of structurally connected habitat to fragments in hectares.

Functional connectivity metrics (Figure 17): considering a binary habitat map, these metrics represent the habitat area functionally linked to a fragment, considering the ability of an organism to cross non-habitat gaps (gap-crossing value). First, the fragments are expanded/dilated by half the value of the organism's gap-crossing capacity (e.g., if an organism crosses 200 m, the fragments will be dilated by 100 m along their entire perimeter) (**Metric 34: Functionally connected dilation**). Then, the fragments that are at the shortest distance from the gap-crossing are grouped, receiving the same ID (**Metric 35: Functionally connected ID**). Then, the area of these fragments with the same ID was summed (**Metric 36: Functionally connected area**). Finally, to obtain the functional connectivity, the difference between the functionally connected area and the fragment area was calculated, representing how much habitat is accessible from a habitat fragment for an organism with a given gap-crossing ability, excluding the area of the very same fragment (**Metric 37: Functional**

connectivity). Crossing capacities considered for the AF: 60 m, 120 m, 180 m, 240 m, 300 m, 600 m. The unit used to calculate the area was hectares. Non-habitat cells were assigned with NULL values.

35. Functionally connected ID (200 m)

34. Functionally connected dilation (200 m)

Figure 17. Functional connectivity metrics. Metric 34: Functionally connected dilation (200 m) is the dilation of fragments for gap-crossing of 100 m (gray pixels). Metric 35: Functionally connected ID (200 m) is the functionally connected area identification. Metric 36: Functionally connected area (ha) is the fragment area connected in hectares. Metric 37: Functional connectivity (ha) (200 m) is the functional connectivity in hectares.

Landscape diversity metrics (Figure 18): considering a multi-class map, each cell of the map

presented a value of the diversity of LULC classes within a square window with a given size, centered in the focal cell. Diversity (Shannon and Simpson) indices consider the number of classes in each class cell within the window of analysis. Shannon's diversity values are positive values and vary between 0 and infinity (Metric 38: Landscape diversity (Shannon)) and Simpson's diversity values vary between 0 and 1 (Metric 39: Landscape diversity (Simpson)). Buffer radius represented half the size of a square window, e.g., for a buffer size of 50 m, the window size was 100 m. Buffer radii used: 50 m, 100 m, 150 m, 200 m, 250 m, 500 m, 750 m, 1000 m, 1500 m and 2000 m. Due to computational limitations, we were unable to calculate landscape diversity metrics for the 2,500 m buffer radius.

39. Landscape diversity (Simpson)

0 0.44 0.44

Figure 18. Landscape diversity metrics. Metric 38: Landscape diversity (Shannon) and Metric 39: Landscape diversity (Simpson) indices for a square window with 100 m size, in the illustrative example for the toy landscape.

Topographic metrics

We calculated six metrics of topography using a Digital Elevation Model (DEM) map from FABDEM v1.2 (Hawker et al. 2022) (Table 4). We used two GRASS GIS modules: r.slope.aspect and *r.geomorphon*.

Metric	Short description	Values	Reference
1. Elevation	Digital representation of elevations (or height) in meters through Digital	Meters	Hawker et al. (2022)

Table 4.	Topographic	metrics	description.
----------	-------------	---------	--------------

	Elevation Model (DEM).		
2. Slope	Inclination from the horizontal stated in degrees	Degrees (0° to 90°)	Hawker et al. (2022)
3. Aspect	Direction that slopes are facing counterclockwise from East in degrees: 90 degrees is North, 180 is West, 270 is South, 360 is East	Degrees (0° to 360°)	Hawker et al. (2022)
4. Profile curvature	Curvature in the direction of steepest slope in 1/meters. A curvature of 0.05 corresponds to a radius of curvature of 20 meters and positive and negative values represent convex and concave forms, respectively	Units	Hawker et al. (2022)
5. Tangential curvature	Curvature in the direction of the contour tangent in 1/meters. A curvature of 0.05 corresponds to a radius of curvature of 20 meters and positive and negative values represent convex and concave forms, respectively	Units	Hawker et al. (2022)
6. Geomorphon	Classification and mapping of landform elements from a DEM based on the principle of pattern recognition (geomorphon)	Classes: flat (1), peak (2), ridge (3), shoulder (4), spur (5), slope (6), hollow (7), footslope (8), valley (9), pit (10)	Jasiewicz and Stepinski (2013)

Hydrologic metrics

We calculated four hydrologic metrics using a Digital Elevation Model (DEM) map from FABDEM v1.2 (Hawker et al. 2022) (Table 5). Due to the large extension, we first calculated these metrics for hydrologic smaller basins using the HydroBASINS level 5 (Lehner and Grill 2013); after that we merged the results into single maps for the four metrics. We used two GRASS GIS modules to calculate the potential streams and springs: *r.watershed* and *r.stream.extract*, both with threshold = 100. With the potential streams and strings done, we deleted the lines and points, respectively, that overlap with masses of water from HydroLAKES (Messager et al. 2016) and official masses of water from three countries: Brazil (Instituto Brasileiro de Geografia e Estatística – IBGE; IBGE, 2021), Argentina (Instituto Geográfico Nacional – IGN; IGN, 2023) and Paraguay (Instituto Nacional de Estadística – INE; INE, 2023). Stream Euclidean distance was generated using *r.grow.distance*

GRASS GIS module with metric = euclidean, and spring kernel was generated using *v.kernel* module with radius varying (50 m, 100 m, 150 m, 200 m, 250 m, 500 m, 750 m, 1000 m, 1500 m, 2000 m, 2500 m) and kernel = gaussian.

Metric	Short description	Values	Scale (buffer radius in meters)	Reference
1. Stream	Potential streams generated from DEM	0 and 1	None	Holmgren (1994)
2. Stream distance	Euclidean distance from potential streams generated from DEM	Meters	None	Holmgren (1994)
3. Spring	Potential springs generated from DEM	0 and 1	None	Holmgren (1994)
4. Spring density	Density (kernel) of potential springs generated from DEM	Units	50, 100, 150, 200, 250, 500, 750, 1000, 1500, 2000, 2500	Okabe et al. (2009)

Table 5. Hydrologic metrics description.

Anthropogenic metrics

We calculated 12 anthropogenic metrics represented by Euclidean distances outside (positive values) from roads, railways, protected areas, indigenous territories and the grouped classes categories: pasture, temporary crop, perennial crop, forest plantation, urban areas, mining and water (Table 1; Figure 2b). These metrics represented the approximation of human impact at the landscape scale. We used the *r.grow.distance* GRASS GIS module with metric = euclidean.

Table 3. Anthropogenic metrics description.

Metric	Short description	Values	Reference
1. Distance from roads	Euclidean distance from roads	Meters	Ribeiro et al. (2009)
2. Distance from railways	Euclidean distance from railways	Meters	Ribeiro et al. (2009)
3. Distance from roads and railways	Euclidean distance from roads and railways	Meters	Ribeiro et al. (2009)
4. Distance from protected areas	Euclidean distance from protected areas	Meters	Ribeiro et al. (2009)

5. Distance from indigenous territories	Euclidean distance from indigenous territories	Meters	Ribeiro et al. (2009)
6. Distance from the forest plantation	Euclidean distance from forest plantation	Meters	Ribeiro et al. (2009)
7. Distance from the pasture	Euclidean distance from pasture	Meters	Ribeiro et al. (2009)
8. Distance from the temporary crop	Euclidean distance from temporary crop	Meters	Ribeiro et al. (2009)
9. Distance from the perennial crop	Euclidean distance from perennial crop	Meters	Ribeiro et al. (2009)
10. Distance from the urban areas	Euclidean distance from urban areas	Meters	Ribeiro et al. (2009)
11. Distance from the mining	Euclidean distance from mining	Meters	Ribeiro et al. (2009)
12. Distance from the water	Euclidean distance from water (lakes and rivers)	Meters	Ribeiro et al. (2009)

Software

All the landscape, topographic, hydrologic and anthropogenic metrics were processed using GRASS GIS 8.3 (Neteler et al. 2012) and R language 4.3 (R Core Team, 2023) with the aid of the *rgrass* package (Bivand, 2023). All landscape metrics were calculated using custom functions based on *LSMetrics* and translated to R (https://github.com/LEEClab/LS_METRICS; Niebuhr et al. *in prep.*).

4. Project personnel

None.

Class III. Data set status and accessibility

A. Status

1. Latest update

November 2023.

2. Latest archive date

November 2023.

3. Metadata status

Last updated in November 2023, version submitted.

4. Data verification

Last updated in November 2023, version submitted.

B. Accessibility

1. Storage location and medium

The original ATLANTIC SPATIAL data set can be accessed as supporting information to this Data Paper publication in Ecology. Updated versions and additional information are available at the Open Science Framework (OSF) (<u>https://doi.org/10.17605/OSF.IO/AJUMC</u>) and code at GitHub (<u>https://github.com/mauriciovancine/ATLANTIC-SPATIAL</u>). We also created the R package *atlanticr* (<u>https://mauriciovancine.github.io/atlanticr</u>) which, in addition to facilitating access to other data papers from the Atlantic series, provides a table with all metrics and their information "atlantic_spatial" and a function to download rasters "atlantic_spatial_download()".

2. Contact persons

Maurício Humberto Vancine (<u>mauricio.vancine@gmail.com</u>), Bernardo Brandão Niebuhr (<u>bernardo_brandaum@yahoo.com.br</u>) or Milton Cezar Ribeiro (<u>miltinho.astronauta@gmail.com</u>).

3. Copyright restrictions

CC BY-NC 4.0: Creative Commons Attribution-Non-Commercial 4.0 International.

4. Proprietary restrictions

a. Release date

None.

b. Citation

Please, cite this data paper when the data are used in publications or teaching events.

c. Disclaimer(s)

None.

5. Costs

None.

Class IV. Data structural descriptors

The data set contains 1003 files. ATLANTIC_SPATIAL.csv contains a table describing the vector and raster files. The AF delimitation vector is available as Geopackage (.gpkg). The 500 rasters are available as GeoTiff (.tif) and TFW files (.tfw). ATLANTIC_SPATIAL.zip contains all rasters in a single compressed file with GeoTiff (.tif) and TFW (.tfw) files.

A. Data set file

- 1. Identity: ATLANTIC_SPATIAL.csv
- 2. Size: 20 columns and 502 rows records, including header row, 231 KB.
- **3. Format and storage mode**: comma-separated values (.csv).
- 4. Header information: See column descriptions in section B.
- 5. Alphanumeric attributes: Mixed.
- 6. Special characters/fields: None.
- 7. Authentication procedures: None.
- 1. Identity: ATLANTIC_SPATIAL.zip
- 2. Size: 232 GB.
- 3. Format and storage mode: compressed file (.zip).
- 4. Header information: None.
- 5. Alphanumeric attributes: None.
- 6. Special characters/fields: None.
- 7. Authentication procedures: None.

B. Variable information

1) Table 1. Information in the ATLANTIC SPATIAL data set. Description of the fields related with the study site of the ATLANTIC_SPATIAL.csv.

Variable identify	Variable description	Levels	Example
id	Identification code for each metric	001-502	006
metric	Metric name	Detailed name of metric in text format	atlantic_spatial_ forest_vegetatio n_fragment_are a

metric_group	Group of metrics	anthropogenic, hydrologic, landscape, topographic	landscape
metric_type	Detailed description of metric types	Detailed description of metric types in text format	fragment_area
metric_description	Detailed description of metrics	Detailed description of metrics in text format	forest vegetation fragment area
value	Metric values	Detailed metrics values in text and number formats	0.09 to infinity
value_description	Detailed description of metric values	Detailed description of metric values in text format	area
unit	Unit of metrics	1/meters, angles in degrees, binary, categorical, discrete, hectares, meters, meters/hectares, proportion, unit, unitary	hectares
lulc_class	Land use and land cover class	forest_plantation, forest_vegetation, mining, multiple, natural_vegetatio n, pasture, perennial_crop, temporary_crop, urban_areas, water	forest_vegetatio n
edge_depth_m	Edge depth for different metrics in meters. Edge depth is the minimum distance at which cells are classified as edges, those that are further away are classified as cores	30-240	NA

gap_crossing_m	Gap-crossing for different metrics in meters. Gap-crossing considers the ability of an organism to cross non-habitat gaps, characterizing the distance to functional connectivity	60-600	NA
scale_buffer_radius_m	Scale for different metrics in meters. Scale is the radius of the buffer to which the moving window is rotated to impute the effect of different scales on landscape metrics	50-10,000	NA
resolution	Raster pixel width and height.	30	30
file_name	Metrics file name	Multiple metrics name files	006_atlantic_sp atial_forest_veg etation_fragmen t_area.tif
link_drive_tif	Link to the .tif file on Google Drive	Multiple links	https://drive.goo gle.com/file/d/1 4yxqKSNILVgz ONtpTozGhPje 4yxeVDcU
link_drive_tfw	Link to the .tfw file on Google Drive	Multiple links	https://drive.goo gle.com/file/d/1 G7vjuQ-sfm- 4E2InIkm2NlcE T7PzJG4a
link_drive_gpkg	Link to the .gpkg file on Google Drive	Multiple links	https://drive.goo gle.com/file/d/1 P1NH14zW_O VLHG_jbnCuq hxSVBkkDL64
link_osf_tif	Link to the .tif file on Open Science Framework (OSF)	Multiple links	https://osf.io/do wnload/6p9ub/
link_osf_tfw	Link to the .tfw file on Open Science Framework (OSF)	Multiple links	https://osf.io/do wnload/kvtcq
link_osf_gpkg	Link to the .gpkg file on Open Science Framework (OSF)	Multiple links	https://osf.io/do wnload/b2t6h/

C. Data anomalies

If no information is available, this was indicated by "NA".

Class V. Supplemental descriptors

A. Data acquisition

1. Data forms or acquisition methods None.

2. Location of completed data forms

None.

3. Data entry verification procedures

None.

B. Quality assurance/quality control procedures

None.

C. Related materials

None.

D. Computer programs and data-processing algorithms

None.

E. Archiving

1. Archival procedures

2. Redundant archival sites

F. Publications and results

Vancine et al. (2023) used part of this data set to describe the spatiotemporal landscape structure of AF.

G. History of data set usage

1. Data request history

None.

2. Data set updates history None.

3. Review history

None.

4. Question and comments from secondary users None.

CRediT authorship contribution statement

MHV: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing— original draft, Writing—review and editing. BBN: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing— original draft, Writing—review and editing. RLM: Conceptualization, Data curation, Investigation, Software, Writing—review and editing. JEFO: Conceptualization, Data curation, Writing—review and editing. VT: Data curation, Conceptualization, Writing—review and editing. RB: Data curation, Writing—review and editing. RSCA: Data curation, Writing—review and editing.
JGRG: Conceptualization, Data curation, Writing—review and editing. JGRG: Conceptualization, Data curation, Writing—review and editing. MG: Writing—review and editing. MCR: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Writing— original draft, Writing—review and editing.

Acknowledgments

We thank all members from the Spatial Ecology and Conservation Lab (LEEC) from UNESP (<u>https://github.com/LEEClab</u>) for their help with fruitful discussions. We thank all open data enthusiasts and the contributors of the ATLANTIC collection for their efforts to encourage reproducible science practices. We thank all members from the SDMGroup from UNESP

(<u>https://github.com/LEEClab/SDMGroup</u>) for their help with fruitful discussions and suggestions in our meetings.

Literature Citations

- Almeida-Gomes, M., and C. F. D. Rocha. 2014. Landscape connectivity may explain anuran species distribution in an Atlantic forest fragmented area. Landscape Ecology 29:29–40.
- Anderle, M., C. Paniccia, M. Brambilla, A. Hilpold, S. Volani, E. Tasser, J. Seeber, and U. Tappeiner. 2022. The contribution of landscape features, climate and topography in shaping taxonomical and functional diversity of avian communities in a heterogeneous Alpine region. Oecologia 199:499–512.
- Beca, G., M. H. Vancine, C. S. Carvalho, F. Pedrosa, R. S. C. Alves, D. Buscariol, C. A. Peres, M. C. Ribeiro, and M. Galetti. 2017. High mammal species turnover in forest patches immersed in biofuel plantations. Biological Conservation 210:352–359.
- Bello, C., M. Galetti, D. Montan, M. A. Pizo, T. C. Mariguela, L. Culot, F. Bufalo, F. Labecca, F. Pedrosa, R. Constantini, C. Emer, W. R. Silva, F. R. da Silva, O. Ovaskainen, and P. Jordano. 2017. Atlantic frugivory: a plant-frugivore interaction data set for the Atlantic Forest. Ecology 98:1729–1729.
- Bello, C., M. Galetti, M. A. Pizo, L. F. S. Magnago, M. F. Rocha, R. A. F. Lima, C. A. Peres, O. Ovaskainen, and P. Jordano. 2015. Defaunation affects carbon storage in tropical forests. Science Advances 1:e1501105.
- Bertassoni, A., R. T. Costa, J. A. Gouvea, R. de C. Bianchi, J. W. Ribeiro, M. H. Vancine, and M. C. Ribeiro. 2019. Land-use changes and the expansion of biofuel crops threaten the giant anteater in southeastern Brazil. Journal of Mammalogy 100:435–444.
- Bicudo da Silva, R. F., E. Moran, A. Viña, J. D. A. Millington, Y. Dou, S. A. Vieira, M. C. Lopez, and J. Liu. 2023. Toward a forest transition across the Brazilian Atlantic Forest biome. Frontiers in Forests and Global Change 6:1071495.
- Bivand R. 2023. rgrass: Interface Between 'GRASS' Geographical Information System and 'R'. R package version 0.3-9. Available at: https://CRAN.R-project.org/package=rgrass.
- Bonfim, F. C. G., P. Dodonov, and E. Cazetta. 2021. Landscape composition is the major driver of the taxonomic and functional diversity of tropical frugivorous birds. Landscape Ecology 36:2535–2547.
- Boscolo, D., B. Nobrega Rodrigues, P. A. Ferreira, L. E. Lopes, V. R. Tonetti, I. C. Reis dosSantos, J. A. Hiruma-Lima, L. Nery, K. Baptista de Lima, J. Perozi, A. V. L. Freitas, B. F.Viana, C. Antunes-Carvalho, D. de S. Amorim, F. Freitas de Oliveira, M. Groppo, M. L.

Absy, R. J. de Almeida-Scabbia, A. Alves-Araújo, F. W. de Amorim, P. A. P. Antiqueira, Y. Antonini, C. Aoki, D. dos Santos Aragão, T. C. T. Balbino, M. da Silva Ferreira Bandeira, B. C. Barbosa, M. R. de Vasconcellos Barbosa, G. J. Baronio, L. O. Barros, M. Beal-Neves, V. M. Bertollo, A. D. de Melo Bezerra, C. R. Buzatto, L. T. Carneiro, E. Caron, C. S. Carpin, E. S. Carvalho, T. L. Carvalho, L. J. Carvalho-Leite, M. F. Cascaes, F. S. de Castro, A. Cavalleri, E. Cazetta, M. T. Cerezini, L. F. M. Coelho, R. Colares, G. D. Cordeiro, J. Cordeiro, A. M. da Silva Corrêa, F. V. da Costa, C. Covre, R. D. M. Cruz, O. Cruz-Neto, L. Correia-da-Rocha-Filho, J. H. C. Delabie, M. da Costa Dórea, V. T. do-Nascimento, J. M. Alves dos-Santos, M. Duarte, M. C. Duarte, O. M. P. Duarte, J. H. A. Dutilh, B. P. Emerick, G. dos S. Fabiano, F. H. A. Farache, A. P. G. de Faria, G. W. Fernandes, P. Maria Abreu Ferreira, M. J. Ferreira-Caliman, L. M. N. Ferreira, T. F. Filgueira de Sá, E. V. Franceschinelli, G. A. Franco-Assis, F. Fregolente Faracco Mazziero, B. M. Freitas, J. Freitas, N. A. Galastri, L. Galetto, C. T. Garcia, M. T. Amela García, N. L. Garcia, C. A. Garófalo, I. Gélvez-Zúñiga, C. da S. Goldas, T. J. Guerra, T. M. Guerra, B. Harter-Marques, J. Hipólito, R. Kamke, R. P. Klein, E. B. de A. Koch, P. Landgref-Filho, S. Laroca, C. M. Leandro, R. Lima, T. R. A. de Lima, L. W. Lima-Verde, E. J. de Lírio, A. V. Lopes, A. P. Luizi-Ponzo, I. C. S. Machado, T. Machado, F. S. Magalhães, T. Mahlmann, C. dos S. F. Mariano, T. E. D. Marques, F. Martello, C. F. Martins, M. N. Martins, R. Martins, A. L. S. Mascarenhas, G. de Assis Mendes, M. de S. Mendonça, L. Menini Neto, M. A. Milward-de-Azevedo, A. O. Miranda, P. M. Montoya-Pfeiffer, A. M. Moraes, B. B. Moraes, E. F. Moreira, M. S. Morini, D. Moure-Oliveira, L. F. De Nadai, V. H. Nagatani, M. H. Nervo, F. de Sigueira Neves, J. S. de Novais, É. S. Araújo-Oliveira, J. H. F. de Oliveira, A. J. de S. Pacheco-Filho, L. Palmieri, M. Pareja, M. de A. Passarella, N. da M. Passos, H. F. Paulino-Neto, A. Luna Peixoto, L. C. Pereira, R. A. S. Pereira, B. Pereira-Silva, J. Pincheira-Ulbrich, M. Pinheiro, A. J. Piratelli, L. R. Podgaiski, D. S. Polizello, L. P. do Prado, F. Prezoto, F. R. de Quadros, E. P. Queiroz, Z. Glebya Maciel Quirino, A. M. Rabello, G. B. P. Rabeschini, M. M. M. Ramalho, F. N. Ramos, L. Rattis, L. H. G. de Rezende, C. Ribeiro, L. J. Robe, E. M. de S. R. Rocha, R. R. Rodrigues, G. Q. Romero, N. Roque, W. de O. Sabino, P. T. Sano, P. da S. S. Reis, F. S. dos Santos, I. Alves dos Santos, F. de A. R. dos Santos, I. Silva dos Santos, R. Sartorello, H. J. Schmitz, M. R. Sigrist, J. C. Silva Junior, A. C. G. e Silva, C. V. C. da Silva, B. S. Alves Vieira Silva, B. L. de F. Silva, C. I. Silva, F. O. da Silva, J. L. S. e Silva, N. S. Silva, O. G. M. da Silva, C. de M. e Silva Neto, E. R. Silva Neto, D. Silveira, M. S. Silveira, R. B. Singer, L. A. S. S. Soares, E. M. Locatelli de Souza, J. M. T. de Souza, J. Steiner, M. C. Teixeira-Gamarra, B. A. Trentin, I. G. Varassin, G. Vila-Verde, V. N. Yoshikawa, E. M. Zanin, M. Galetti, and M. C. Ribeiro. 2023. Atlantic flower-invertebrate

interactions: A data set of occurrence and frequency of floral visits. Ecology 104:e3900.

- Bovendorp, R. S., F. T. Brum, R. A. McCleery, B. Baiser, R. Loyola, M. V. Cianciaruso, and M. Galetti. 2019. Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography 42:23–35.
- Bovendorp, R. S., N. Villar, E. F. de Abreu-Junior, C. Bello, A. L. Regolin, A. R. Percequillo, and M. Galetti. 2017. Atlantic small-mammal: a dataset of communities of rodents and marsupials of the Atlantic forests of South America. Ecology 98:2226–2226.
- Carnaval, A. C., E. Waltari, M. T. Rodrigues, D. Rosauer, J. VanDerWal, R. Damasceno, I. Prates, M. Strangas, Z. Spanos, D. Rivera, M. R. Pie, C. R. Firkowski, M. R. Bornschein, L. F. Ribeiro, and C. Moritz. 2014. Prediction of phylogeographic endemism in an environmentally complex biome. Proceedings of the Royal Society B: Biological Sciences 281:20141461.
- Cassimiro, I. M. F., M. C. Ribeiro, and J. C. Assis. 2023. How did the animal come to cross the road? Drawing insights on animal movement from existing roadkill data and expert knowledge. Landscape Ecology 38:2035–2051.
- Culot, L., L. A. Pereira, I. Agostini, M. A. B. Almeida, R. S. C. Alves, I. Aximoff, A. Bager, M. C. Baldovino, T. R. Bella, J. C. Bicca-Marques, C. Braga, C. R. Brocardo, A. K. N. Campelo, G. R. Canale, J. da C. Cardoso, E. Carrano, D. C. Casanova, C. R. Cassano, E. Castro, J. J. Cherem, A. G. Chiarello, B. A. P. Cosenza, R. Costa-Araújo, N. C. da Silva, M. S. Di Bitetti, A. S. Ferreira, P. C. R. Ferreira, M. de S. Fialho, L. F. Fuzessy, G. S. T. Garbino, F. de O. Garcia, C. A. F. R. Gatto, C. C. Gestich, P. R. Gonçalves, N. R. C. Gontijo, M. E. Graipel, C. E. Guidorizzi, R. O. Espíndola Hack, G. P. Hass, R. R. Hilário, A. Hirsch, I. Holzmann, D. H. Homem, H. E. Júnior, G. S. Júnior, M. C. M. Kierulff, C. Knogge, F. Lima, E. F. Lima, C. S. Martins, A. A. Lima, A. Martins, W. P. Martins, F. R. Melo, R. Melzew, J. M. D. Miranda, F. Miranda, A. M. Moraes, T. C. Moreira, M. S. Castro Morini, M. B. Nagy-Reis, L. Oklander, L. Carvalho Oliveira, A. P. Paglia, A. Pagoto, M. Passamani, F. Camargo Passos, C. A. Peres, M. S. Campos Perine, M. P. Pinto, A. R. M. Pontes, M. Port-Carvalho, B. H. S. do Prado, A. L. Regolin, G. C. Rezende, A. Rocha, J. dos S. Rocha, R. R. Paula Rodarte, L. P. Sales, E. dos Santos, P. M. Santos, C. S. S. Bernardo, R. Sartorello, L. L. Serra, E. Setz, A. S. Almeida e Silva, L. H. da Silva, P. B. E. da Silva, M. Silveira, R. L. Smith, S. M. Souza, A. C. Srbek-Araujo, L. C. Trevelin, C. Valladares-Padua, L. Zago, E. Marques, S. F. Ferrari, R. Beltrão-Mendes, D. J. Henz, F. E. da Veiga da Costa, I. K. Ribeiro, L. L. T. Quintilham, M. Dums, P. M. Lombardi, R. T. R. Bonikowski, S. G. Age, J. P. Souza-Alves, R. Chagas, R. G. T. da Cunha, M. M. Valença-Montenegro, G. Ludwig, L. Jerusalinsky, G. Buss, R. B. Azevedo, R. F. Filho, F. Bufalo, L. Milhe, M. M.

dos Santos, R. Sepulvida, D. da S. Ferraz, M. B. Faria, M. C. Ribeiro, and M. Galetti. 2019. ATLANTIC PRIMATES: a dataset of communities and occurrences of primates in the Atlantic Forests of South America. Ecology 100:e02525.

- Cunha, A. de A., C. B. M. Cruz, and G. A. Bouchardet da Fonseca. 2019. Legal Atlantic Forest (Mata Atlântica Legal): integrating biogeography to public policies towards the conservation of the biodiversity hotspot. Sustentabilidade em Debate 10:320–353.
- Da Silva, J. M., and C. H. M. Casteleti. 2003. Status of the Biodiversity of the Atlantic Forest of Brazil. Pages 3–11 in C. Galindo-Leal and I. Câmara, editors. Washington (DC): C. Galind-Leal, IG Câmara. The Atlantic Forest of South America: biodiversity status, threats, and outlook. Conservation International.
- Dinerstein, E., D. Olson, A. Joshi, C. Vynne, N. D. Burgess, E. Wikramanayake, N. Hahn, S.
 Palminteri, P. Hedao, R. Noss, M. Hansen, H. Locke, E. C. Ellis, B. Jones, C. V. Barber, R.
 Hayes, C. Kormos, V. Martin, E. Crist, W. Sechrest, L. Price, J. E. M. Baillie, D. Weeden,
 K. Suckling, C. Davis, N. Sizer, R. Moore, D. Thau, T. Birch, P. Potapov, S. Turubanova,
 A. Tyukavina, N. de Souza, L. Pintea, J. C. Brito, O. A. Llewellyn, A. G. Miller, A. Patzelt,
 S. A. Ghazanfar, J. Timberlake, H. Klöser, Y. Shennan-Farpón, R. Kindt, J.-P. B. Lillesø, P.
 van Breugel, L. Graudal, M. Voge, K. F. Al-Shammari, and M. Saleem. 2017. An
 Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 67:534–545.
- Dirzo, R., H. S. Young, M. Galetti, G. Ceballos, N. J. B. Isaac, and B. Collen. 2014. Defaunation in the Anthropocene. Science 345:401–406.
- Driscoll, D. A., S. C. Banks, P. S. Barton, D. B. Lindenmayer, and A. L. Smith. 2013. Conceptual domain of the matrix in fragmented landscapes. Trends in Ecology & Evolution 28:605– 613.
- Duflot, R., A. Ernoult, S. Aviron, L. Fahrig, and F. Burel. 2017. Relative effects of landscape composition and configuration on multi-habitat gamma diversity in agricultural landscapes. Agriculture, Ecosystems & Environment 241:62–69.
- Fahrig, L. 2003. Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics 34:487–515.
- Feitosa, R. M., M. S. de Castro Morini, A. C. Martins, T. M. de Andrade Ribeiro, F. B. Noll, E. F. dos Santos, E. M. Cancello, and J. P. Constantini. 2021. Social Insects of the Atlantic Forest. Pages 151–183 *in* M. C. M. Marques and C. E. V. Grelle, editors. The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-diverse Forest. Springer International Publishing, Cham.

Ferro e Silva, A. M., T. Sobral-Souza, M. H. Vancine, R. L. Muylaert, A. P. de Abreu, S. M.

Pelloso, M. D. de Barros Carvalho, L. de Andrade, M. C. Ribeiro, and M. J. de O. Toledo. 2018. Spatial prediction of risk areas for vector transmission of Trypanosoma cruzi in the State of Paraná, southern Brazil. PLOS Neglected Tropical Diseases 12:e0006907.

- Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37:4302–4315.
- Figueiredo, M. de S. L., M. M. Weber, C. A. Brasileiro, R. Cerqueira, C. E. V. Grelle, C. N. Jenkins, C. V. Solidade, M. T. C. Thomé, M. M. Vale, and M. L. Lorini. 2021. Tetrapod Diversity in the Atlantic Forest: Maps and Gaps. Pages 185–204 *in* M. C. M. Marques and C. E. V. Grelle, editors. The Atlantic Forest. Springer International Publishing, Cham.
- Figueiredo, M. S. L., C. S. Barros, A. C. Delciellos, E. B. Guerra, P. Cordeiro-Estrela, M. Kajin, M. R. Alvarez, P. H. Asfora, D. Astúa, H. G. Bergallo, R. Cerqueira, L. Geise, R. Gentile, C. E. V. Grelle, G. E. Iack-Ximenes, L. C. Oliveira, M. Weksler, and M. V. Vieira. 2017.
 Abundance of small mammals in the Atlantic Forest (ASMAF): a data set for analyzing tropical community patterns. Ecology 98:2981–2981.
- Fischer, J., and D. B. Lindenmayer. 2007. Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography 16:265–280.
- Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available at: <u>http://floradobrasil.jbrj.gov.br</u>. Accessed on: 10 Oct 2023.
- Fletcher, R., and M.-J. Fortin. 2018. Spatial Ecology and Conservation Modeling: Applications with R. Springer International Publishing, Cham.
- Fletcher, R. J., R. A. McCleery, D. U. Greene, and C. A. Tye. 2016. Integrated models that unite local and regional data reveal larger-scale environmental relationships and improve predictions of species distributions. Landscape Ecology 31:1369–1382.
- Galetti, M., C. R. Brocardo, R. A. Begotti, L. Hortenci, F. Rocha-Mendes, C. S. S. Bernardo, R. S. Bueno, R. Nobre, R. S. Bovendorp, R. M. Marques, F. Meirelles, S. K. Gobbo, G. Beca, G. Schmaedecke, and T. Siqueira. 2017. Defaunation and biomass collapse of mammals in the largest Atlantic forest remnant. Animal Conservation 20:270–281.
- Galetti, M., F. Gonçalves, N. Villar, V. B. Zipparro, C. Paz, C. Mendes, L. Lautenschlager, Y.
 Souza, P. Akkawi, F. Pedrosa, L. Bulascoschi, C. Bello, A. P. Sevá, L. Sales, L. Genes, F.
 Abra, and R. S. Bovendorp. 2021. Causes and Consequences of Large-Scale Defaunation in the Atlantic Forest. Pages 297–324 *in* M. C. M. Marques and C. E. V. Grelle, editors. The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-diverse Forest. Springer International Publishing, Cham.
- Giupponi, A., P. Demite, C. Flechtmann, F. Hernandes, A. Mendes, G. H. Migliorini, G. Miranda, and T. Gonçalves-Souza. 2017. Aracnídeos da Mata Atlântica. Pages 129–235 in E. L. A.

M. Filho and C. E. Conte, editors. Revisões em zoologia: Mata Atlântica. Editora UFPR, Curitiba, Paraná, Brasil.

- Gonçalves, F., R. S. Bovendorp, G. Beca, C. Bello, R. Costa-Pereira, R. L. Muylaert, R. R. Rodarte, N. Villar, R. Souza, M. E. Graipel, J. J. Cherem, D. Faria, J. Baumgarten, M. R. Alvarez, E. M. Vieira, N. Cáceres, R. Pardini, Y. L. R. Leite, L. P. Costa, M. A. R. Mello, E. Fischer, F. C. Passos, L. H. Varzinczak, J. A. Prevedello, A. P. Cruz-Neto, F. Carvalho, A. R. Percequillo, A. Paviolo, A. Nava, J. M. B. Duarte, N. U. de la Sancha, E. Bernard, R. G. Morato, J. F. Ribeiro, R. G. Becker, G. Paise, P. S. Tomasi, F. Vélez-Garcia, G. L. Melo, J. Sponchiado, F. Cerezer, M. A. S. Barros, A. Q. S. de Souza, C. C. dos Santos, G. A. F. Giné, P. Kerches-Rogeri, M. M. Weber, G. Ambar, L. V. Cabrera-Martinez, A. Eriksson, M. Silveira, C. F. Santos, L. Alves, E. Barbier, G. C. Rezende, G. S. T. Garbino, É. O. Rios, A. Silva, A. T. A. Nascimento, R. S. de Carvalho, A. Feijó, J. Arrabal, I. Agostini, D. Lamattina, S. Costa, E. Vanderhoeven, F. R. de Melo, P. de Oliveira Laroque, L. Jerusalinsky, M. M. Valença-Montenegro, A. B. Martins, G. Ludwig, R. B. de Azevedo, A. Anzóategui, M. X. da Silva, M. Figuerêdo Duarte Moraes, A. Vogliotti, A. Gatti, T. Püttker, C. S. Barros, T. K. Martins, A. Keuroghlian, D. P. Eaton, C. L. Neves, M. S. Nardi, C. Braga, P. R. Gonçalves, A. C. Srbek-Araujo, P. Mendes, J. A. de Oliveira, F. A. M. Soares, P. A. Rocha, P. Crawshaw, M. C. Ribeiro, and M. Galetti. 2018a. ATLANTIC MAMMAL TRAITS: a data set of morphological traits of mammals in the Atlantic Forest of South America. Ecology 99:498–498.
- Gonçalves, F., W. Hannibal, M. N. Godoi, F. I. Martins, R. F. Oliveira, V. V. Figueiredo, J. Casella, and É. F. G. G. de Sá. 2018b. Non-volant mammals from the Upper Paraná River Basin: a data set from a critical region for conservation in Brazil. Ecology 99:499–499.
- Hansen, M. C., P. V. Potapov, A. H. Pickens, A. Tyukavina, A. Hernandez-Serna, V. Zalles, S. Turubanova, I. Kommareddy, S. V. Stehman, X.-P. Song, and A. Kommareddy. 2022.
 Global land use extent and dispersion within natural land cover using Landsat data.
 Environmental Research Letters 17:034050.
- Hasui, É., J. P. Metzger, R. G. Pimentel, L. F. Silveira, A. A. d. A. Bovo, A. C. Martensen, A. Uezu, A. L. Regolin, A. Â. Bispo de Oliveira, C. A. F. R. Gatto, C. Duca, C. B. Andretti, C. Banks-Leite, D. Luz, D. Mariz, E. R. Alexandrino, F. M. de Barros, F. Martello, I. M. d. S. Pereira, J. N. da Silva, K. M. P. M. d. B. Ferraz, L. N. Naka, L. dos Anjos, M. A. Efe, M. A. Pizo, M. Pichorim, M. S. S. Gonçalves, P. H. C. Cordeiro, R. A. Dias, R. d. L. Muylaert, R. C. Rodrigues, T. V. V. da Costa, V. Cavarzere, V. R. Tonetti, W. R. Silva, C. N. Jenkins, M. Galetti, and M. C. Ribeiro. 2018. ATLANTIC BIRDS: a data set of bird species from the Brazilian Atlantic Forest. Ecology 99:497–497.

- Hawker, L., P. Uhe, L. Paulo, J. Sosa, J. Savage, C. Sampson, and J. Neal. 2022. A 30 m global map of elevation with forests and buildings removed. Environmental Research Letters 17:024016.
- He, K. S., B. A. Bradley, A. F. Cord, D. Rocchini, M. Tuanmu, S. Schmidtlein, W. Turner, M. Wegmann, and N. Pettorelli. 2015. Will remote sensing shape the next generation of species distribution models? Remote Sensing in Ecology and Conservation 1:4–18.
- He, X., J. Liang, G. Zeng, Y. Yuan, and X. Li. 2019. The Effects of Interaction between Climate Change and Land-Use/Cover Change on Biodiversity-Related Ecosystem Services. Global Challenges 3:1800095.
- Holmgren, P. 1994. Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation. Hydrological Processes 8:327–334.
- IBGE Instituto Brasileiro de Geografia e Estatística, 2019. Biomas e Sistema Costeiro-Marinho do Brasil — 1:250000. Available at: <u>https://www.ibge.gov.br/geociencias/cartas-e-</u> mapas/informacoes-ambientais/15842-biomas.html?=&t=acesso-ao-produto.
- Iezzi, M. E., M. S. Di Bitetti, J. Martínez Pardo, A. Paviolo, P. Cruz, and C. De Angelo. 2022. Forest fragments prioritization based on their connectivity contribution for multiple Atlantic Forest mammals. Biological Conservation 266:109433.
- IGN Instituto Geográfico Nacional, 2022. Available at: https://www.ign.gob.ar.
- INE Instituto Nacional de Estadística, 2022. Available at: https://www.ine.gov.py.
- Iserhard, C., M. Uehara-Prado, O. Marini-Filho, M. Duarte, and A. Freitas. 2017. Fauna da Mata Atlântica: Lepidoptera-Borboletas. Pages 57–102 *in* E. L. de A. Monteiro-Filho and C. E. Conte, editors. Revisões em zoologia: Mata Atlântica. Editora UFPR, Curitiba, Paraná, Brasil.
- Jackson, H. B., and L. Fahrig. 2015. Are ecologists conducting research at the optimal scale?: Is research conducted at optimal scales? Global Ecology and Biogeography 24:52–63.
- Jasiewicz, J., and T. F. Stepinski. 2013. Geomorphons a pattern recognition approach to classification and mapping of landforms. Geomorphology 182:147–156.
- Jetz, W., D. S. Wilcove, and A. P. Dobson. 2007. Projected Impacts of Climate and Land-Use Change on the Global Diversity of Birds. PLOS Biology 5:e157.
- Johnson, C. N., A. Balmford, B. W. Brook, J. C. Buettel, M. Galetti, L. Guangchun, and J. M. Wilmshurst. 2017. Biodiversity losses and conservation responses in the Anthropocene. Science 356:270–275.
- Joly, C. A., J. P. Metzger, and M. Tabarelli. 2014. Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytologist 204:459–473.
- Kareiva, P. 1994. Special Feature: Space: The Final Frontier for Ecological Theory. Ecology 75:1-

1.

- Karger, D. N., D. R. Schmatz, G. Dettling, and N. E. Zimmermann. 2020. High-resolution monthly precipitation and temperature time series from 2006 to 2100. Scientific Data 7:248.
- Lambais, M. R., D. E. Crowley, J. C. Cury, R. C. Büll, and R. R. Rodrigues. 2006. Bacterial Diversity in Tree Canopies of the Atlantic Forest. Science 312:1917–1917.
- Lehner, B., and G. Grill. 2013. Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems: GLOBAL RIVER
 HYDROGRAPHY AND NETWORK ROUTING. Hydrological Processes 27:2171–2186.
- Lima, F., G. Beca, R. L. Muylaert, C. N. Jenkins, M. L. L. Perilli, A. M. O. Paschoal, R. L.
 Massara, A. P. Paglia, A. G. Chiarello, M. E. Graipel, J. J. Cherem, A. L. Regolin, L. G. R.
 Oliveira Santos, C. R. Brocardo, A. Paviolo, M. S. Di Bitetti, L. M. Scoss, F. L. Rocha, R.
 Fusco-Costa, C. A. Rosa, M. X. Da Silva, L. Hufnagell, P. M. Santos, G. T. Duarte, L. N.
 Guimarães, L. L. Bailey, F. H. G. Rodrigues, H. M. Cunha, F. M. Fantacini, G. O. Batista, J.
 A. Bogoni, M. A. Tortato, M. R. Luiz, N. Peroni, P. V. De Castilho, T. B. Maccarini, V. P.
 Filho, C. D. Angelo, P. Cruz, V. Quiroga, M. E. Iezzi, D. Varela, S. M. C. Cavalcanti, A. C.
 Martensen, E. V. Maggiorini, F. F. Keesen, A. V. Nunes, G. M. Lessa, P. Cordeiro-Estrela,
 M. G. Beltrão, A. C. F. De Albuquerque, B. Ingberman, C. R. Cassano, L. C. Junior, M. C.
 Ribeiro, and M. Galetti. 2017. ATLANTIC-CAMTRAPS: a dataset of medium and large
 terrestrial mammal communities in the Atlantic Forest of South America. Ecology 98:2979–2979.
- de Lima, R. A. F., A. A. Oliveira, G. R. Pitta, A. L. de Gasper, A. C. Vibrans, J. Chave, H. ter Steege, and P. I. Prado. 2020. The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nature Communications 11:6347.
- Lima-Ribeiro, M. S. 2015. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics 10.
- Lopes, B. S., K. A. B. Corrêa, M. E. K. Ogasawara, R. S. Precinoto, C. C. Cassiano, B. M. Sell, R. S. Melo, P. C. dos Reis Oliveira, and S. F. de B. Ferraz. 2022. How does land use cover change affect hydrological response in the Atlantic Forest? Implications for ecological restoration. Frontiers in Water 4.
- McGarigal K., S. A. Cushman, and E. Ene. 2023. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical Maps. Available at the: <u>https://www.fragstats.org</u>
- Marjakangas, E., N. Abrego, V. Grøtan, R. A. F. Lima, C. Bello, R. S. Bovendorp, L. Culot, É. Hasui, F. Lima, R. L. Muylaert, B. B. Niebuhr, A. A. Oliveira, L. A. Pereira, P. I. Prado, R. D. Stevens, M. H. Vancine, M. C. Ribeiro, M. Galetti, and O. Ovaskainen. 2020.
 Fragmented tropical forests lose mutualistic plant–animal interactions. Diversity and

Distributions 26:154–168.

- Marques, M. C. M., W. Trindade, A. Bohn, and C. E. V. Grelle. 2021. The Atlantic Forest: An Introduction to the Megadiverse Forest of South America. Pages 3–23 in M. C. M. Marques and C. E. V. Grelle, editors. The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-diverse Forest. Springer International Publishing, Cham.
- Martinez Pardo, J., S. Saura, A. Insaurralde, M. S. Di Bitetti, A. Paviolo, and C. De Angelo. 2023. Much more than forest loss: four decades of habitat connectivity decline for Atlantic Forest jaguars. Landscape Ecology 38:41–57.
- Melo, F. P. L., S. R. R. Pinto, P. H. S. Brancalion, P. S. Castro, R. R. Rodrigues, J. Aronson, and M. Tabarelli. 2013. Priority setting for scaling-up tropical forest restoration projects: Early lessons from the Atlantic Forest Restoration Pact. Environmental Science & Policy 33:395–404.
- Messager, M. L., B. Lehner, G. Grill, I. Nedeva, and O. Schmitt. 2016. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications 7:13603.
- Messager, M. L., J. D. Olden, J. D. Tonkin, R. Stubbington, J. S. Rogosch, M. H. Busch, C. J.
 Little, A. W. Walters, C. L. Atkinson, M. Shanafield, S. Yu, K. S. Boersma, D. A. Lytle, R.
 H. Walker, R. M. Burrows, and T. Datry. 2023. A metasystem approach to designing environmental flows. BioScience 73:643–662.
- Miguet, P., H. B. Jackson, N. D. Jackson, A. E. Martin, and L. Fahrig. 2016. What determines the spatial extent of landscape effects on species? Landscape Ecology 31:1177–1194.
- Mimet, A., T. Houet, R. Julliard, and L. Simon. 2013. Assessing functional connectivity: a landscape approach for handling multiple ecological requirements. Methods in Ecology and Evolution 4:453–463.
- Monteiro, E. C. S., M. A. Pizo, M. H. Vancine, and M. C. Ribeiro. 2022. Forest cover and connectivity have pervasive effects on the maintenance of evolutionary distinct interactions in seed dispersal networks. Oikos 2022:oik.08240.
- Muylaert, R. d. L., R. D. Stevens, C. E. L. Esbérard, M. A. R. Mello, G. S. T. Garbino, L. H. Varzinczak, D. Faria, M. d. M. Weber, P. Kerches Rogeri, A. L. Regolin, H. F. M. d. Oliveira, L. d. M. Costa, M. A. S. Barros, G. Sabino-Santos, M. A. Crepaldi de Morais, V. S. Kavagutti, F. C. Passos, E.-L. Marjakangas, F. G. M. Maia, M. C. Ribeiro, and M. Galetti. 2017. ATLANTIC BATS: a data set of bat communities from the Atlantic Forests of South America. Ecology 98:3227–3227.
- Muylaert, R. L., M. H. Vancine, R. Bernardo, J. E. F. Oshima, T. Sobral-Souza, V. R. Tonetti, B. B. Niebuhr, and M. C. Ribeiro. 2018. Uma nota sobre os limites territoriais da Mata Atlântica.

Oecologia Australis 22:302–311.

- Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853–858.
- Niebuhr, B. B. S., M. H. Vancine, R. L. Muylaert, F. Martello, J. W. Ribeiro, and Ribeiro, M. C. Landscape Metrics (LSMetrics): a spatially explicit tool for calculating connectivity and other ecologically-scaled landscape metrics. In preparation.
- Neteler, M., M. H. Bowman, M. Landa, and M. Metz. 2012. GRASS GIS: A multi-purpose open source GIS. Environmental Modelling & Software 31:124–130.
- Okabe, A., T. Satoh, and K. Sugihara. 2009. A kernel density estimation method for networks, its computational method and a GIS-based tool. International Journal of Geographical Information Science 23:7–32.
- Oshima, J. E. de F., M. L. S. P. Jorge, T. Sobral-Souza, L. Börger, A. Keuroghlian, C. A. Peres, M. H. Vancine, B. Collen, and M. C. Ribeiro. 2021. Setting priority conservation management regions to reverse rapid range decline of a key neotropical forest ungulate. Global Ecology and Conservation 31:e01796.
- Palmeirim, A. F., M. S. L. Figueiredo, C. E. V. Grelle, C. Carbone, and M. V. Vieira. 2019. When does habitat fragmentation matter? A biome-wide analysis of small mammals in the Atlantic Forest. Journal of Biogeography 46:2811–2825.
- Peres, E. A., R. Pinto-da-Rocha, L. G. Lohmann, F. A. Michelangeli, C. Y. Miyaki, and A. C. Carnaval. 2020. Patterns of Species and Lineage Diversity in the Atlantic Rainforest of Brazil. Pages 415–447 *in* V. Rull and A. C. Carnaval, editors. Neotropical Diversification: Patterns and Processes. Springer International Publishing, Cham.
- Piffer, P. R., M. R. Rosa, L. R. Tambosi, J. P. Metzger, and M. Uriarte. 2022. Turnover rates of regenerated forests challenge restoration efforts in the Brazilian Atlantic forest. Environmental Research Letters 17:045009.
- Pinto, S. R., F. Melo, M. Tabarelli, A. Padovesi, C. A. Mesquita, C. A. De Mattos Scaramuzza, P. Castro, H. Carrascosa, M. Calmon, R. Rodrigues, R. G. César, and P. H. S. Brancalion. 2014. Governing and Delivering a Biome-Wide Restoration Initiative: The Case of Atlantic Forest Restoration Pact in Brazil. Forests 5:2212–2229.
- Pires, A. P. F., C. Y. Shimamoto, M. C. G. Padgurschi, F. R. Scarano, and M. C. M. Marques. 2021.
 Atlantic Forest: Ecosystem Services Linking People and Biodiversity. Pages 347–367 *in* M.
 C. M. Marques and C. E. V. Grelle, editors. The Atlantic Forest. Springer International Publishing, Cham.
- Poggio, L., L. M. de Sousa, N. H. Batjes, G. B. M. Heuvelink, B. Kempen, E. Ribeiro, and D. Rossiter. 2021. SoilGrids 2.0: producing soil information for the globe with quantified

spatial uncertainty. SOIL 7:217–240.

- Potapov, P., M. C. Hansen, A. Pickens, A. Hernandez-Serna, A. Tyukavina, S. Turubanova, V. Zalles, X. Li, A. Khan, F. Stolle, N. Harris, X.-P. Song, A. Baggett, I. Kommareddy, and A. Kommareddy. 2022. The Global 2000-2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First Results. Frontiers in Remote Sensing 3.
- Pyles, M. V., L. F. S. Magnago, V. A. Maia, B. X. Pinho, G. Pitta, A. L. de Gasper, A. C. Vibrans, R. M. dos Santos, E. van den Berg, and R. A. F. Lima. 2022. Human impacts as the main driver of tropical forest carbon. Science Advances 8:eabl7968.
- Ramos, F. N., S. R. Mortara, N. Monalisa-Francisco, J. P. C. Elias, L. M. Neto, L. Freitas, R. Kersten, A. M. Amorim, F. B. Matos, A. F. Nunes-Freitas, S. Alcantara, M. H. N. Alexandre, R. J. Almeida-Scabbia, O. J. G. Almeida, F. E. Alves, R. M. Oliveira Alves, F. S. Alvim, A. C. S. Andrade, S. Andrade, L. Y. S. Aona, A. C. Araujo, K. C. T. Araújo, V. Ariati, J. C. Assis, C. O. Azevedo, B. F. Barbosa, D. E. F. Barbosa, F. dos R. Barbosa, F. Barros, G. A. Basilio, F. A. Bataghin, F. Bered, J. S. Bianchi, C. T. Blum, C. R. Boelter, A. Bonnet, P. H. S. Brancalion, T. B. Breier, C. de T. Brion, C. R. Buzatto, A. Cabral, T. J. Cadorin, E. Caglioni, L. Canêz, P. H. Cardoso, F. S. Carvalho, R. G. Carvalho, E. L. M. Catharino, S. J. Ceballos, M. T. Cerezini, R. G. César, C. Cestari, C. J. N. Chaves, V. Citadini-Zanette, L. F. M. Coelho, J. V. Coffani-Nunes, R. Colares, G. D. Colletta, N. de M. Corrêa, A. F. Costa, G. M. Costa, L. M. S. Costa, N. G. S. Costa, D. R. Couto, C. Cristofolini, A. C. R. Cruz, L. A. Del Neri, M. Pasquo, A. Santos Dias, L. do C. D. Dias, R. Dislich, M. C. Duarte, J. R. Fabricante, F. H. A. Farache, A. P. G. Faria, C. Faxina, M. T. M. Ferreira, E. Fischer, C. R. Fonseca, T. Fontoura, T. M. Francisco, S. G. Furtado, M. Galetti, M. L. Garbin, A. L. Gasper, M. Goetze, J. Gomes-da-Silva, M. F. A. Gonçalves, D. R. Gonzaga, A. C. G. e Silva, A. de C. Guaraldo, E. de S. G. Guarino, A. V. Guislon, L. B. Hudson, J. G. Jardim, P. Jungbluth, S. dos S. Kaeser, I. M. Kessous, N. M. Koch, Y. S. Kuniyoshi, P. H. Labiak, M. E. Lapate, A. C. L. Santos, R. L. B. Leal, F. S. Leite, P. Leitman, A. P. Liboni, D. Liebsch, D. V. Lingner, J. A. Lombardi, E. Lucas, J. dos R. Luzzi, P. Mai, L. F. Mania, W. Mantovani, A. G. Maragni, M. C. M. Marques, G. Marquez, C. Martins, L. do N. Martins, P. L. S. S. Martins, F. F. F. Mazziero, C. de A. Melo, M. M. F. Melo, A. F. Mendes, L. Mesacasa, L. P. C. Morellato, V. de S. Moreno, A. Muller, M. M. da S. Murakami, E. Cecconello, C. Nardy, M. H. Nervo, B. Neves, M. G. C. Nogueira, F. R. Nonato, A. T. Oliveira-Filho, C. P. L. Oliveira, G. E. Overbeck, G. M. Marcusso, M. L. B. Paciencia, P. Padilha, P. T. Padilha, A. C. A. Pereira, L. C. Pereira, R. A. S. Pereira, J. Pincheira-Ulbrich, J. S. R. Pires, M. A. Pizo, K. C. Pôrto, L. Rattis, J. R. de M. Reis, S. G. dos Reis, T. C. Rocha-Pessôa, C. F. D. Rocha, F. S. Rocha, A. R. P. Rodrigues, R. R.

Rodrigues, J. M. Rogalski, R. L. Rosanelli, A. Rossado, D. R. Rossatto, D. C. Rother, C. R.
Ruiz-Miranda, F. Z. Saiter, M. B. Sampaio, L. D. Santana, J. S. dos Santos, R. Sartorello,
M. Sazima, J. L. Schmitt, G. Schneider, B. G. Schroeder, L. Sevegnani, V. O. S. Júnior, F.
R. Silva, M. J. Silva, M. P. P. Silva, R. G. Silva, S. M. Silva, R. B. Singer, G. Siqueira, L. E.
Soares, H. C. Sousa, A. Spielmann, V. R. Tonetti, M. T. Z. Toniato, P. S. B. Ulguim, C.
Berg, E. Berg, I. G. Varassin, I. B. V. Silva, A. C. Vibrans, J. L. Waechter, E. W.
Weissenberg, P. G. Windisch, M. Wolowski, A. Yañez, V. N. Yoshikawa, L. R. Zandoná,
C. M. Zanella, E. M. Zanin, D. C. Zappi, V. B. Zipparro, J. P. F. Zorzanelli, and M. C.
Ribeiro. 2019. ATLANTIC EPIPHYTES: a data set of vascular and non-vascular epiphyte
plants and lichens from the Atlantic Forest. Ecology 100:e02541.

- Regolin, A. L., J. J. Cherem, M. E. Graipel, J. A. Bogoni, J. W. Ribeiro, M. H. Vancine, M. A. Tortato, L. G. Oliveira-Santos, F. M. Fantacini, M. R. Luiz, P. V. de Castilho, M. C. Ribeiro, and N. C. Cáceres. 2017. Forest cover influences occurrence of mammalian carnivores within Brazilian Atlantic Forest. Journal of Mammalogy 98:1721–1731.
- Reis, R. E., J. S. Albert, F. Di Dario, M. M. Mincarone, P. Petry, and L. A. Rocha. 2016. Fish biodiversity and conservation in South America. Journal of Fish Biology 89:12–47.
- Ribeiro, M. C., J. P. Metzger, A. C. Martensen, F. J. Ponzoni, and M. M. Hirota. 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142:1141–1153.
- Rios, E., M. Benchimol, K. De Vleeschouwer, and E. Cazetta. 2021a. Spatial predictors and species' traits: evaluating what really matters for medium-sized and large mammals in the Atlantic Forest, Brazil. Mammal Review:mam.12276.
- Rios, E., M. Benchimol, P. Dodonov, K. De Vleeschouwer, and E. Cazetta. 2021b. Testing the habitat amount hypothesis and fragmentation effects for medium- and large-sized mammals in a biodiversity hotspot. Landscape Ecology 36:1311–1323.
- Riva, F., and S. E. Nielsen. 2020. Six key steps for functional landscape analyses of habitat change. Landscape Ecology 35:1495–1504.
- Rocchini, D., L. Delucchi, G. Bacaro, P. Cavallini, H. Feilhauer, G. M. Foody, K. S. He, H.
 Nagendra, C. Porta, C. Ricotta, S. Schmidtlein, L. D. Spano, M. Wegmann, and M. Neteler.
 2013. Calculating landscape diversity with information-theory based indices: A GRASS GIS solution. Ecological Informatics 17:82–93.
- Rodrigues, R. C., É. Hasui, J. C. Assis, J. C. C. Pena, R. L. Muylaert, V. R. Tonetti, F. Martello, A. L. Regolin, T. V. V. da Costa, M. Pichorim, E. Carrano, L. E. Lopes, M. F. de Vasconcelos, C. S. Fontana, A. L. Roos, F. Gonçalves, C. Banks-Leite, V. Cavarzere, M. A. Efe, M. A. S. Alves, A. Uezu, J. P. Metzger, P. de T. Z. Antas, K. M. P. M. de Ferraz, L. C. Calsavara, A.

A. Bispo, H. F. P. Araujo, C. Duca, A. J. Piratelli, L. N. Naka, R. A. Dias, C. A. F. R. Gatto, M. A. V. Vallejos, G. dos R. Menezes, L. Bugoni, H. Rajão, J. J. Zocche, G. Willrich, E. S. da Silva, L. T. Manica, A. de C. Guaraldo, G. Althmann, P. P. Serafini, M. R. Francisco, C. Lugarini, C. G. Machado, F. Marques-Santos, R. Bobato, E. A. de Souza, R. J. Donatelli, C. D. Ferreira, J. C. Morante-Filho, N. D. Paes-Macarrão, A. Macarrão, M. R. Lima, L. I. Jacoboski, C. Candia-Gallardo, V. B. Alegre, A. E. Jahn, K. V. de C. Barbosa, C. Cestari, J. N. da Silva, N. S. D. Silveira, A. C. V. Crestani, A. P. Petronetto, A. A. A. Bovo, A. D. Viana, A. C. Araujo, A. H. dos Santos, A. C. A. do Amaral, A. Ferreira, A. H. Vieira-Filho, B. C. Ribeiro, C. C. C. Missagia, C. Bosenbecker, C. A. B. Medolago, C. R. R. Espínola, C. Faxina, C. E. C. Nunes, C. Prates, D. T. A. da Luz, D. J. Moreno, D. Mariz, D. Faria, D. Meyer, E. A. Doná, E. R. Alexandrino, E. Fischer, F. Girardi, F. B. Giese, F. L. S. Shibuya, F. A. Faria, F. B. de Farias, F. de L. Favaro, F. J. F. Freitas, F. G. Chaves, F. M. G. Las-Casas, G. L. M. Rosa, G. M. D. L. Torre, G. M. Bochio, G. E. Bonetti, G. Kohler, G. S. Toledo-Lima, G. P. Plucenio, Í. Menezes, I. M. D. Torres, I. C. C. Provinciato, I. R. Viana, J. J. Roper, J. E. Persegona, J. J. Barcik, J. Martins-Silva, J. P. G. Just, J. P. Tavares-Damasceno, J. R. de A. Ferreira, J. R. R. Rosoni, J. E. T. Falcon, L. M. Schaedler, L. B. Mathias, L. R. Deconto, L. da C. Rodrigues, M. A. P. Meyer, M. Repenning, M. A. Melo, M. A. S. de Carvalho, M. Rodrigues, M. F. C. Nunes, M. H. Ogrzewalska, M. L. Gonçalves, M. B. Vecchi, M. Bettio, M. N. da M. Baptista, M. S. Arantes, N. L. Ruiz, P. G. B. Andrade, P. H. L. Ribeiro, P. M. G. Junior, P. Macario, R. Oliveira Fratoni, R. Meurer, R. S. Saint-Clair, R. S. Romagna, R. C. A. Lacerda, R. A. S. Cerboncini, R. B. Lyra, R. Lau, R. C. Rodrigues, R. R. Faria, R. R. Laps, S. L. Althoff, S. Jesus, S. Namba, T. V. Braga, T. Molin, T. P. F. Câmara, T. R. Enedino, U. Wischhoff, V. C. Oliveira, V. Leandro-Silva, V. Araújo-Lima, V. de O. Lunardi, R. F. de Gusmão, J. M. de S. Correia, L. P. Gaspar, R. C. B. Fonseca, P. A. F. P. Neto, A. C. M. M. de Aquino, B. B. de Camargo, B. A. Cezila, L. M. Costa, R. M. Paolino, C. Z. Kanda, E. C. S. Monteiro, J. E. F. Oshima, M. Alves-Eigenheer, M. A. Pizo, L. F. Silveira, M. Galetti, and M. C. Ribeiro. 2019. ATLANTIC BIRD TRAITS: a data set of bird morphological traits from the Atlantic forests of South America. Ecology:e02647.

- Rosa, M. R., P. H. S. Brancalion, R. Crouzeilles, L. R. Tambosi, P. R. Piffer, F. E. B. Lenti, M. Hirota, E. Santiami, and J. P. Metzger. 2021. Hidden destruction of older forests threatens Brazil's Atlantic Forest and challenges restoration programs. Science Advances 7:eabc4547.
- Santos, J. P. dos, A. V. L. Freitas, K. S. Brown, J. Y. O. Carreira, P. E. Gueratto, A. H. B. Rosa, G. M. Lourenço, G. M. Accacio, M. Uehara-Prado, C. A. Iserhard, A. Richter, K. Gawlinski, H. P. Romanowski, N. O. Mega, M. O. Teixeira, A. Moser, D. B. Ribeiro, P. F. Araujo, B.

K. C. Filgueiras, D. H. A. Melo, I. R. Leal, M. do V. Beirão, S. P. Ribeiro, E. C. B. Cambuí,
R. N. Vasconcelos, M. Z. Cardoso, M. Paluch, R. R. Greve, J. C. Voltolini, M. Galetti, A. L.
Regolin, T. Sobral-Souza, and M. C. Ribeiro. 2018. Atlantic butterflies: a data set of fruit-feeding butterfly communities from the Atlantic forests. Ecology 99:2875–2875.

- Santos, J. P., T. Sobral-Souza, K. S. Brown, M. H. Vancine, M. C. Ribeiro, and A. V. L. Freitas. 2020. Effects of landscape modification on species richness patterns of fruit-feeding butterflies in Brazilian Atlantic Forest. Diversity and Distributions 26:196–208.
- Santos, P. M., K. M. P. M. de B. Ferraz, M. C. Ribeiro, B. B. Niebuhr, M. H. Vancine, A. G. Chiarello, and A. P. Paglia. 2022. Natural forest regeneration on anthropized landscapes could overcome climate change effects on the endangered maned sloth (*Bradypus torquatus* , Illiger 1811). Journal of Mammalogy:gyac084.
- Scarano, F. R. 2002. Structure, Function and Floristic Relationships of Plant Communities in Stressful Habitats Marginal to the Brazilian Atlantic Rainforest. Annals of Botany 90:517– 524.
- Scarano, F. R., and P. Ceotto. 2015. Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodiversity and Conservation 24:2319–2331.
- Schweizer, D., G. Petter, R. Gomes César, S. Ferraz, V. de Souza Moreno, P. H. S. Brancalion, and H. Bugmann. 2022. Natural forest regrowth under different land use intensities and landscape configurations in the Brazilian Atlantic Forest. Forest Ecology and Management 508:120012.
- Silva, R. R., F. Martello, R. M. Feitosa, O. G. M. Silva, L. P. do Prado, C. R. F. Brandão, E. Z. de Albuquerque, M. S. C. Morini, J. H. C. Delabie, E. C. dos Santos Monteiro, A. Emanuel Oliveira Alves, A. L. Wild, A. V. Christianini, A. Arnhold, A. Casadei Ferreira, A. M. Oliveira, A. D. Santos, A. Galbán, A. A. de Oliveira, A. G. M. Subtil, A. M. Dias, A. E. de Carvalho Campos, A. M. Waldschimidt, A. V. L. Freitas, A. N. Avalos, A. L. S. Meyer, A. F. Sánchez-Restrepo, A. V. Suarez, A. S. Souza, A. C. M. Queiroz, A. J. Mayhé-Nunes, A. da Cruz Reis, B. C. Lopes, B. Guénard, B. M. Trad, B. Caitano, B. Yagound, B. Pereira-Silva, B. L. Fisher, B. L. P. Tavares, B. B. Moraes, B. K. C. Filgueiras, C. Guarda, C. R. Ribas, C. E. Cereto, C. E. L. Esbérard, C. E. G. R. Schaefer, C. I. Paris, C. Bueno, C. J. Lasmar, C. B. da Costa-Milanez, C. J. Lutinski, C. M. Ortiz-Sepulveda, C. T. Wazema, C. S. F. Mariano, C. A. Barrera, C. L. Klunk, D. O. Santana, D. Larrea, D. C. Rother, D. R. Souza-Campana, D. Y. Kayano, D. L. Alves, D. S. Assis, D. Anjos, E. C. B. França, E. F. Santos, E. A. Silva, É. V. Santos, E. B. Koch, E. L. S. Siqueira, É. A. Almeida, E. S. Araujo, E. Villarreal, E. Becker, E. de Oliveira Canedo-Júnior, E. A. Santos-Neto, E. P. Economo, É. S. Araújo-Oliveira, F. Cuezzo, F. S. Magalhães, F. M. Neves, F. B. Rosumek, F. E.

Dorneles, F. B. Noll, F. V. Arruda, F. A. Esteves, F. N. Ramos, F. R. M. Garcia, F. S. de Castro, F. Serna, F. R. Marcineiro, F. S. Neves, G. B. do Nascimento, G. de Figueiredo Jacintho, G. P. Camacho, G. T. Ribeiro, G. M. Lourenço, G. R. Soares, G. A. Castilho, G. P. Alves, G. A. Zurita, G. H. Machado Santos, H. C. Onody, H. S. Oliveira, H. L. Vasconcelos, H. F. Paulino-Neto, H. Brant, I. Rismo Coelho, I. J. de Melo Teles e Gomes, I. R. Leal, I. A. Dos Santos, I. C. S. Santos, I. O. Fernandes, I. C. Nascimento, J. M. Queiroz, J. E. Lattke, J. Majer, J. H. Schoereder, J. O. Dantas, J. Andrade-Silva, J. M. Díaz Guastavino, J. Silveira dos Santos, J. Filloy, J. C. M. Chaul, J. A. Lutinski, K. S. Carvalho, K. S. Ramos, K. L. S. Sampaio, L. A. M. Ribeiro, L. Sousa-Souto, L. N. Paolucci, L. Elizalde, L. R. Podgaiski, L. Chifflet, L. J. Carvalho-Leite, L. A. Calcaterra, L. E. Macedo-Reis, L. F. S. Magnago, M. S. Madureira, M. M. Silva, M. R. Pie, M. Uehara-Prado, M. A. Pizo, M. A. Pesquero, M. A. F. Carneiro, M. A. Busato, M. F. B. de Almeida, M. I. Bellocq, M. Tibcherani, M. S. Casimiro, M. U. V. Ronque, M. M. S. da Costa, M. A. Angotti, M. V. de Oliveira, M. Leponce, M. M. G. Imata, M. F. de Oliveira Martins, M. Antunes Ulysséa, N. B. do Espirito Santo, N. M. Ladino López, N. S. Balbino, N. S. da Silva, N. V. H. Safar, P. L. de Andrade, P. H. S. A. Camargo, P. S. Oliveira, P. Dodonov, P. Luna, P. S. Ward, P. E. Hanisch, P. S. Silva, R. Divieso, R. L. Carvalho, R. B. F. Campos, R. Antoniazzi, R. E. Vicente, R. Giovenardi, R. I. Campos, R. R. C. Solar, R. T. Fujihara, R. de Jesus Santos, R. Fagundes, R. J. Guerrero, R. S. Probst, R. S. de Jesus, R. Silvestre, R. A. López-Muñoz, R. de Souza Ferreira-Châline, R. P. S. Almeida, S. de Mello Pinto, S. Santoandré, S. L. Althoff, S. P. Ribeiro, T. Jory, T. T. Fernandes, T. de Oliveira Andrade, T. P. L. Pereira, T. Gonçalves-Souza, T. S. R. da Silva, V. N. G. Silva, V. M. Lopez, V. R. Tonetti, V. A. F. Nacagava, V. M. Oliveira, W. Dáttilo, W. DaRocha, W. Franco, W. Dröse, W. Antonialli, and M. C. Ribeiro. 2022. ATLANTIC ANTS: a data set of ants in Atlantic Forests of South America. Ecology 103:e03580.

- Sloan, S., C. N. Jenkins, L. N. Joppa, D. L. A. Gaveau, and W. F. Laurance. 2014. Remaining natural vegetation in the global biodiversity hotspots. Biological Conservation 177:12–24.
- Soille, P., and P. Vogt. 2009. Morphological segmentation of binary patterns. Pattern Recognition Letters 30:456–459.
- Song, X.-P., M. C. Hansen, S. V. Stehman, P. V. Potapov, A. Tyukavina, E. F. Vermote, and J. R. Townshend. 2018. Global land change from 1982 to 2016. Nature 560:639–643.
- Souza, C. M., J. Z. Shimbo, M. R. Rosa, L. L. Parente, A. A. Alencar, B. F. T. Rudorff, H.
 Hasenack, M. Matsumoto, L. G. Ferreira, P. W. M. Souza-Filho, S. W. de Oliveira, W. F.
 Rocha, A. V. Fonseca, C. B. Marques, C. G. Diniz, D. Costa, D. Monteiro, E. R. Rosa, E.
 Vélez-Martin, E. J. Weber, F. E. B. Lenti, F. F. Paternost, F. G. C. Pareyn, J. V. Siqueira, J.
 L. Viera, L. C. F. Neto, M. M. Saraiva, M. H. Sales, M. P. G. Salgado, R. Vasconcelos, S.

Galano, V. V. Mesquita, and T. Azevedo. 2020. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sensing 12:2735.

- Souza, Y., F. Gonçalves, L. Lautenschlager, P. Akkawi, C. Mendes, M. M. Carvalho, R. S.
 Bovendorp, H. Fernandes-Ferreira, C. Rosa, M. E. Graipel, N. Peroni, J. J. Cherem, J. A.
 Bogoni, C. R. Brocardo, J. Miranda, L. Z. da Silva, G. Melo, N. Cáceres, J. Sponchiado, M.
 C. Ribeiro, and M. Galetti. 2019. ATLANTIC MAMMALS: a data set of assemblages of
 medium- and large-sized mammals of the Atlantic Forest of South America. Ecology
 100:e02785.
- Tambosi, L. R., A. C. Martensen, M. C. Ribeiro, and J. P. Metzger. 2014. A Framework to Optimize Biodiversity Restoration Efforts Based on Habitat Amount and Landscape Connectivity: Optimizing Restoration Based on Landscape Resilience. Restoration Ecology 22:169–177.
- Tang, L., and T. T. Werner. 2023. Global mining footprint mapped from high-resolution satellite imagery. Communications Earth & Environment 4:1–12.
- Tonetti, V., B. B. Niebuhr, M. Ribeiro, and M. A. Pizo. 2022. Forest regeneration may reduce the negative impacts of climate change on the biodiversity of a tropical hotspot. Diversity and Distributions 28:2956–2971.
- Tonetti V., F. Bocalini, F. Schunck, M. H. Vancine, M. Butti, M. C. Ribeiro, M, Pizo, A. Balmford. 2023. The Protected Areas network may be inefficient to cover biodiversity in a fragmented tropical hotspot under different climate scenarios. Perspective in Ecology and Conservation. in press.
- Tonetti, V., J. C. Pena, M. D. Scarpelli, L. S. Sugai, F. M. Barros, P. R. Anunciação, P. M. Santos, A. L. Tavares, and M. C. Ribeiro. 2023. Landscape heterogeneity: concepts, quantification, challenges and future perspectives. Environmental Conservation:1–10.
- Turner, M. G., and R. H. Gardner. 2015. Landscape Ecology in Theory and Practice. Springer New York, New York, NY.
- Vale, M. M., P. A. Arias, G. Ortega, M. Cardoso, B. F. A. Oliveira, R. Loyola, and F. R. Scarano.
 2021. Climate Change and Biodiversity in the Atlantic Forest: Best Climatic Models,
 Predicted Changes and Impacts, and Adaptation Options. Pages 253–267 *in* M. C. M.
 Marques and C. E. V. Grelle, editors. The Atlantic Forest: History, Biodiversity, Threats and
 Opportunities of the Mega-diverse Forest. Springer International Publishing, Cham.
- Vancine, M. H., K. da S. Duarte, Y. S. de Souza, J. G. R. Giovanelli, P. M. Martins-Sobrinho, A. López, R. P. Bovo, F. Maffei, M. B. Lion, J. W. Ribeiro Júnior, R. Brassaloti, C. O. R. da Costa, H. O. Sawakuchi, L. R. Forti, P. Cacciali, J. Bertoluci, C. F. B. Haddad, and M. C.

Ribeiro. 2018. ATLANTIC AMPHIBIANS: a data set of amphibian communities from the Atlantic Forests of South America. Ecology 99:1692–1692.

- Vancine, M. H., R. L. Muylaert, B. B. Niebuhr, J. E. F. Oshima, V. Tonetti, R. Bernardo, C. De Angelo, M. R. Rosa, C. H. Grohmann, and M. C. Ribeiro. 2023. The Atlantic Forest of South America: spatiotemporal dynamics of remaining vegetation and implications for conservation. bioRxiv. <u>https://doi.org/10.1101/2023.09.16.558076</u>.
- Varassin, I. G., K. Agostini, M. Wolowski, and L. Freitas. 2021. Pollination Systems in the Atlantic Forest: Characterisation, Threats, and Opportunities. Pages 325–344 in M. C. M. Marques and C. E. V. Grelle, editors. The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-diverse Forest. Springer International Publishing, Cham.
- Vega, G. C., L. R. Pertierra, and M. Á. Olalla-Tárraga. 2017. MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Scientific Data 4:170078.
- Vitule, J. R. S., T. V. T. Occhi, L. Carneiro, V. S. Daga, F. A. Frehse, L. A. V. Bezerra, S. Forneck, H. S. de Pereira, M. O. Freitas, C. G. Z. Hegel, V. Abilhoa, M. T. Grombone-Guaratini, J. Queiroz-Sousa, V. R. Pivello, D. M. Silva-Matos, I. Oliveira, L. F. Toledo, M. A. V. Vallejos, R. D. Zenni, A. G. P. Ford, and R. R. Braga. 2021. Non-native Species Introductions, Invasions, and Biotic Homogenization in the Atlantic Forest. Pages 269–295 *in* M. C. M. Marques and C. E. V. Grelle, editors. The Atlantic Forest: History, Biodiversity, Threats and Opportunities of the Mega-diverse Forest. Springer International Publishing, Cham.
- Williams, J. J., and T. Newbold. 2020. Local climatic changes affect biodiversity responses to land use: A review. Diversity and Distributions 26:76–92.
- Young, H. S., D. J. McCauley, M. Galetti, and R. Dirzo. 2016. Patterns, Causes, and Consequences of Anthropocene Defaunation. Annual Review of Ecology, Evolution, and Systematics 47:333–358.
- Zupo, T., J. Lazzarotto Freitas, D. Almeida Dos Reis, and M. Ferreira De Siqueira. 2022. Trends and knowledge gaps on ecological restoration research in the Brazilian Atlantic Forest. Restoration Ecology 30:e13645.
- Zwiener, V. P., A. A. Padial, M. C. M. Marques, F. V. Faleiro, R. Loyola, and A. T. Peterson. 2017. Planning for conservation and restoration under climate and land use change in the Brazilian Atlantic Forest. Diversity and Distributions 23:955–966.