

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" INSTITUTO DE BIOCIÊNCIAS - RIO CLARO

ECOLOGIA

Bruno Eduardo Ribeiro Silva

Comparação da distribuição de espécies inferidos por modelos de nicho ecológicos e mapas de especialistas da IUCN para anfíbios anuros da América do Sul

> Rio Claro - SP 2022

Bruno Eduardo Ribeiro Silva

Comparação da distribuição de espécies inferidos por modelos de nicho ecológicos e mapas de especialistas da IUCN para anfíbios anuros da América do Sul

Trabalho de Conclusão de Curso apresentado ao Instituto de Biociências – Câmpus de Rio Claro, da Universidade Estadual Paulista "Júlio de Mesquita Filho", para obtenção do grau de Ecólogo.

Orientador: Me. Maurício Humberto Vancine

Coorientador: Lucas de Souza Almeida

Supervisor: Prof. Milton Cezar Ribeiro

Rio Claro - SP 2022

S586c

Silva, Bruno Eduardo Ribeiro

Comparação da distribuição de espécies inferidos por modelos de nicho ecológicos e mapas de especialistas da IUCN para anfíbios anuros da América do Sul / Bruno Eduardo Ribeiro Silva. -- Rio Claro, 2022 107 p. : tabs., mapas

Trabalho de conclusão de curso (Bacharelado - Ecologia) - Universidade Estadual Paulista (Unesp), Instituto de Biociências, Rio Claro

Orientador: Maurício Humberto Vancine

Coorientador: Lucas de Souza Almeida

1. Ecologia. 2. Modelos de distribuição de espécies. 3. Anuros. 4. América do Sul. I. Título.

Sistema de geração automática de fichas catalográficas da Unesp. Biblioteca do Instituto de Biociências, Rio Claro. Dados fornecidos pelo autor(a).

Essa ficha não pode ser modificada.

Bruno Eduardo Ribeiro Silva

Comparação da distribuição de espécies inferidos por modelos de nicho ecológicos e mapas de especialistas da IUCN para anfíbios anuros da América do Sul

Trabalho de Conclusão de Curso apresentado ao Instituto de Biociências – Câmpus de Rio Claro, da Universidade Estadual Paulista "Júlio de Mesquita Filho", para obtenção do grau de Ecólogo.

BANCA EXAMINADORA:

Me. Maurício Humberto Vancine

Dr. João Gabriel Ribeiro Giovanelli Prof. Dr. Milton Cezar Ribeiro

Aprovado em: 25 de Novembro de 2022

Assinatura do discente

Lucas de Souza Almeida

Assinatura do coorientador

Lancine arrício

Assinatura do orientador

Assinatura do supervisor

AGRADECIMENTOS

Primeiramente gostaria de agradecer à minha mãe Suzi e ao meu pai Antônio Lúcio que me possibilitaram ingressar e permanecer em uma universidade pública de referência como a Unesp. Agradeço também à minha família que se formou ao longo desses anos de graduação, minha companheira Larissa e minha filha Elis, que estiveram do meu lado nos momentos mais difíceis me apoiando e fazendo o sentido da minha vida principalmente nesses últimos três longos anos de pandemia. Agradeço a todas as pessoas que participaram da minha vida acadêmica ao longo desses onze anos que contribuíram de diversas formas pra minha chegada a esse momento, aos professores e professoras e todos os profissionais que trabalham todos os dias para manter a universidade funcionando em especial ao Professor Miltinho que abraça a todos e comigo não foi diferente. Agradeço aos amigues da minha turma e da Unesp em geral de todos os cursos com quem dividi momentos importantes e inesquecíveis durante esse tempo e que se tornaram minha família em Rio Claro, em especial, gostaria de agradecer ao Maurício que foi um amigo de turma com quem compartilhei trabalhos acadêmicos, saídas de campo, conversas e bons momentos, que se formou anos antes de mim e teve a sensibilidade de me aceitar como orientado, agradeço imensamente à sua paciência, mentoria, motivação, e por me apresentar ao Lucas, que foi fundamental para o desenvolvimento do presente trabalho, sem esses dois amigos eu não estaria aqui entregando esse trabalho muito menos me formando como um ecólogo.

Um agradecimento aos amigos que conheci na cidade, alguns que inclusive me empregaram em momentos difíceis, e por fim, aos meus companheiros de república com quem dividi a mesma casa ao longo de 7 anos intensos, Aderaldo (Ades), Ailton (Cascão), André (Nativo), Cássio (Japanão), Cézar (Pardal), Igor (Precoce), Felipe (Enfermeiro) e Ives (Quinto) que renderam conversas e aprendizados e momentos valiosos pra vida toda. Por fim um agradecimento especial ao Vitor, psicoterapeuta que faz um excelente trabalho junto a minha pessoa e que foi um profissional essencial nos últimos anos da minha jornada na graduação.

RESUMO

Estimar a distribuição espacial das espécies sempre foi um desafio para pesquisadores das áreas de Ecologia, Biogeografia e Macroecologia. Modelos de Nicho Ecológico – MNE's (Ecological Niche Models - ENM's) são uma interessante abordagem que vem sendo utilizada para essa finalidade. Entretanto, devido à falta de dados de ocorrências das espécies e de variáveis ambientais que capturem as condições favoráveis à persistência das populações, os mapas de especialistas fornecidos pela União Internacional para a Conservação da Natureza – UICN ainda são extensivamente utilizados. Contudo, esse método não foi inicialmente criado para servir de base para estudos de macroecologia, apresentando muitas vezes distribuições não adequadas às espécies em relação aos MNE's. Dessa forma, este trabalho teve como objetivo usar MNE's baseados em variáveis climáticas para predizer a distribuição potencial de espécies de anuros da América do Sul que possuam dados disponíveis para os polígonos disponibilizados pela UICN. A avaliação das distribuições das espécies foi realizada por meio de índice de sobreposição de nicho e de diversidade de espécies (alfa e beta). Os MNE's, em geral, apresentaram distribuições mais precisas da distribuição das espécies em relação aos polígonos da UICN, principalmente quando consideramos o padrão de distribuição das ocorrências. Nossos resultados de comparação das distribuições usando índice de sobreposição de nicho revelaram que grande parte da distribuição das espécies possui valores altos guando comparadas aos limites dos polígonos, no entanto, quando extrapolamos esses limites, os dois métodos apresentam baixa sobreposição, principalmente para áreas de distribuição das espécies que são restritas. Quando usamos os índices de diversidade, nossos resultados mostraram grandes diferenças nos padrões do número de espécies, principalmente de composição de espécies, predominando a troca de espécies. Dessa forma, a partir dos nossos resultados, aconselhamos o uso de MNE's sempre que possível para estudos macroecológicos, biogeográficos e principalmente de conservação.

Palavras-chave: América do Sul, Anuros, Biogeografia, Distribuição de espécies,

Mapas de especialistas da UICN, Modelos de Nicho Ecológico

ABSTRACT

Estimating the spatial distribution of species has always been a challenge for researchers in Ecology, Biogeography and Macroecology. Ecological Niche Models (ENM's) are an interesting approach that has been used for this purpose. However, due to the lack of species occurrence data and environmental variables that capture conditions favorable to population persistence, the expert maps provided by the International Union for Conservation of Nature (IUCN) are still extensively used. However, this method was not initially created to serve as a basis for studies of macroecology, often presenting distributions not suitable for species in relation to the ENM's. Thus, this work aimed to use ENM's based on climatic variables to predict the potential distribution of South American anuran species that have data available for the polygons made available by the UICN. Species distributions were assessed using niche overlap and species diversity indices (alpha and beta). The ENM's, in general, showed more accurate distributions of species distributions compared to the UICN polygons, especially when considering the distribution pattern of occurrences. Our results of comparing distributions using niche overlap index revealed that most of the species distributions have high values when compared to the polygon boundaries, however, when we extrapolate these boundaries, both methods show low overlap, especially for species distribution areas that are restricted. When we used the diversity indices, our results showed large differences in the patterns of the number of species, especially species composition, with species exchange predominating. Thus, based on our results, we advise the use of ENM's whenever possible for macroecological, biogeographical, and especially conservation studies.

Keywords: Anurans, Biogeography, Ecological niche models, IUCN expert-maps, South America, Species distribution

SUMÁRIO

1	INTRODUÇÃO	6
2	OBJETIVOS	11
3	MÉTODOS	12
3.1	Lista de espécies	12
3.2	Ocorrências das espécies	12
3.3	Variáveis ambientais	13
3.4	Ajuste e avaliação dos MNE's	13
3.5	Avaliação da sobreposição de nicho e padrões de diversidade	14
4	RESULTADOS	16
4.1	Lista de espécies e ocorrências	16
4.2	Modelos e avaliação	17
4.3	Sobreposição de nicho	18
4.3.1	Sobreposição e área de distribuição	20
4.3.2	Sobreposição por Família	21
4.3.3	Sobreposição por tipo de Hábito	23
4.3.4	Sobreposição por categoria de Ameaça	25
4.4	Padrões de diversidade	27
4.4.1	Diversidade alfa	27
4.4.2	Diversidade beta	29
5	DISCUSSÃO	33
6	CONCLUSÃO	41
	REFERÊNCIAS	42
	APÊNDICE A - Lista de espécies	51

1 INTRODUÇÃO

Os anfíbios são conhecidos por serem bons modelos biológicos para estudos biogeográficos e inferência de suas distribuições geográficas, e principalmente, acerca dos efeitos da antropização (BECKER, et al. 2007), modificações da paisagem (GARDNER, et al. 2007) e condições ambientais que agem sobre esses animais, considerados muitas vezes como excelentes bioindicadores para os habitats terrestres e aquáticos (DA ROCHA BRAGA, et al. 2022). Isso se deve ao fato de serem animais ectotérmicos, onde a fisiologia desses é conhecidamente mais dependente e relacionada às condições climáticas dos ambientes em que vivem (KEARNEY et al. 2009; GIOVANELLI et al. 2010). Os anfíbios têm a pele permeável, sendo mais sensíveis às variações das condições ambientais que vão além da temperatura, como a umidade e suscetibilidade dos seus habitats a fontes de poluentes, como compostos químicos utilizados pela agricultura, evidenciado quando comparados com outros grupos de vertebrados (MANN et al. 2009; GIOVANELLI et al. 2010; LERTZMAN-LEPOFSKY et al. 2020). Dessa forma, as condições ambientais caracterizadas pelas variáveis climáticas (temperatura e umidade), tendem a produzir modelos que capturam sua distribuição geográfica com eficiência (VASCONCELOS; PRADO, 2019). Além disso, a baixa capacidade de locomoção da maioria dos anfíbios e a necessidade de microhabitats específicos para reprodução os tornam fiéis aos seus habitats (GIOVANELLI et al. 2010).

A região Neotropical concentra a maior diversidade de espécies de anfíbios do planeta (VASCONCELOS *et al.* 2019; DUELLMAN; TRUEB, 1994) devido aos complexos processos geológicos e ambientais que ocorreram ao longo de sua gênese (VASCONCELOS *et al.* 2019; RANGEL *et al.* 2018). A glaciação do Pleistoceno foi um importante evento para a diversificação das espécies na América do Sul, durante seu máximo (26 mil – 19 mil anos atrás), e proporcionou variações entre ambientes instáveis e estáveis, sendo que estes serviram de refúgio para a biodiversidade, que isolada geograficamente apresentou altas taxas de especiação (CARNAVAL *et al.* 2014). Atualmente existem mais de 2500 espécies conhecidas de anfíbios anuros na América do Sul (UICN, 2022). Apesar desse número fornecido pela UICN ser recente, ele já se encontra defasado. Isso se deve ao constante incremento de conhecimentos na herpetologia nas últimas décadas (FUNK *et al.* 2012; VASCONCELOS *et al.* 2019). Áreas como a sistemática, a taxonomia, a

genética molecular e a filogeografia, que se desenvolveram consideravelmente nos últimos anos, estão se mostrando ferramentas eficientes para apresentar a complexidade evolutiva dos grupos e, consequentemente, novos táxons (PADIAL; DE LA RIVA, 2009; FISER *et al.* 2018; LIMA *et al.* 2020). Essa mudança no número de espécies se dá principalmente quando tratamos de anfíbios anuros, onde cada vez mais espécies são descobertas, sendo parte considerável delas ditas como crípticas (PADIAL; DE LA RIVA, 2009; LIMA *et al.* 2020). Um exemplo desse grande aporte de espécies novas pode ser observado quando comparamos as listas de espécies de anfíbios do Brasil, onde a diferença entre a lista de 2019 em relação à lista mais recente de 2021, é de 50 novas espécies de anuros descritas (SEGALLA *et al.* 2019; LIMA *et al.* 2020; PINHEIRO *et al.* 2021; SEGALLA *et al.* 2021).

Apesar desse incremento substancial de espécies, ainda existe um grande potencial para novas descobertas e descrições de anfíbios para a América do Sul, principalmente em países como o Brasil, Colômbia e Peru (MOURA; JETZ, 2021). Juntamente dessas descobertas, surgem novas perguntas acerca desses animais, tanto os que vêm sendo descritos, quanto os já conhecidos, nos apresentando uma das grandes lacunas de conhecimento quando lidamos com a biodiversidade, como o conhecimento sobre a distribuição geográfica desses animais, a denominada lacuna Wallaceana (HORTAL *et al.*, 2015).

Para entender as distribuições e quão abundantes as espécies são é preciso conhecer múltiplos fatores como condições abióticas, fatores bióticos, dispersão e capacidade evolutiva, que operam em diferentes intensidades e escalas para determinar a ocorrência de populações (BEGON; TOWNSEND; HARPER, 2006; SOBERÓN; PETERSON, 2005). A distribuição de uma espécie pode ser explicada como um espaço geográfico ocupado por uma espécie, onde as características bióticas e abióticas do local propiciam sua sobrevivência e, no melhor dos casos, seu crescimento populacional (MOTA-VARGAS *et al.*, 2019). Essa distribuição pode ser determinada por processos temporais, como a história evolutiva do grupo, a distribuição geográfica de seus ancestrais e a dinâmica populacional, mas também por processos ecológicos, como os fatores organizados por Hutchinson no conceito de nicho ecológico (COLWELL; RANGEL, 2009; MOTA-VARGAS *et al.*, 2019). Esse conceito, fundamental para estudos em ecologia e biogeografia (PETERSON *et al.*, 2011) e amplamente discutido e revisado (CHASE; LEIBOLD, 2003) é a base conceitual dos modelos de nicho ecológico (*Ecological Niche Models – ENM's*).

Os MNE's são métodos que inferem a distribuição potencial das espécies por meio de algoritmos matemáticos que estimam o nicho das espécies correlacionando as ocorrências espaciais com variáveis ambientais como precipitação, temperatura, relevo, dentre outras (PETERSON *et al.*, 2011). Dessa forma, através desses modelos são estimados valores de adequabilidade de habitat, que apontam locais ainda não conhecidos para a ocorrência das espécies, apresentando assim sua distribuição potencial (PETERSON *et al.*, 2011; GUISAN *et al.*, 2017). Dessa forma, os MNE's são ferramentas poderosas para a promoção de soluções de várias questões ecológicas, como: identificar áreas potencialmente adequadas para reintrodução de espécies ameaçadas; averiguar os efeitos futuros das mudanças climáticas na distribuição potencial de espécies; predizer as consequências das mudanças da paisagem sobre a distribuição de espécies; predizer locais propícios para a invasão de espécies exóticas; apontar áreas potenciais de ocorrência para espécies raras ou pouco estudadas/amostradas (FLETCHER; FORTIN, 2018).

Outra forma de inferir a distribuição potencial das espécies é através de mapas feitos por especialistas, ou Expert Maps, que consistem no uso de MCP's (Minimum Convex Polygons) (MACE et al., 1992) para determinar a área de ocorrência (EOO - Extent of Occurrence) de uma espécie. Esse método consiste na criação de um mínimo polígono convexo, sendo esse o menor polígono no qual nenhum ângulo interno seja maior que 180° e que contenha todos os pontos de ocorrência (UICN 2001). A área de extensão sobreposta com mapas de variáveis ambientais, como a cobertura da terra, por exemplo, escolhidos e ajustados com base no conhecimento de especialistas para cada espécie apontam a área de ocupação (AOO - Area of Occupancy) na área de ocorrência, que é a menor área essencial para a sobrevivência das populações de uma determinada espécie em qualquer fase do ciclo de sua vida (Figura 1) (UICN 2001; HERKT et al., 2017; HAWKINS et al., 2008). Os mapas de especialistas são compilados e fornecidos principalmente pela União Internacional para a Conservação da Natureza (UICN). Esses mapas são indispensáveis para várias aplicações, sendo muitas vezes um fio condutor que auxilia vários pesquisadores e profissionais que atuam diretamente em campo, pois são eficientes ao delimitar o espaço geográfico das espécies, determinando em que locais sua presença é mais provável (HURLBERT; WHITE, 2005). Outras aplicações usuais para esses mapas são a possibilidade de gerar informação sobre riqueza de espécies e identificar locais que possam ser considerados hotspots, aplicações que tendem a funcionar para grandes extensões regionais como países ou continentes (HURLBERT; JETZ, 2007; MAINALI *et al.*, 2020).

Figura 1. Dois exemplos da distinção entre área de ocorrência e área de ocupação. A) distribuição espacial dos pontos de ocorrência. B) mínimo polígono convexo traçado entre os pontos de ocorrência. C) extensão de ocorrência medida através de mapas de grade.

Fonte: UICN Red List Categories and Criteria: Versão 3.1. UICN Species Survival Commission. UICN, Gland, Switzerland and Cambridge, UK. - p. 12 (2001).

Diversos estudos utilizam os polígonos da UICN para a realização de trabalhos e pesquisas nas áreas de biogeografia e macroecologia (AMADO *et al.* 2021; HARFOOT *et al.* 2021; LION *et al.* 2019; AMADO *et al.* 2019; VASCONCELOS *et al.* 2019), por serem muitas vezes a única fonte de dados disponíveis para muitas espécies (VASCONCELOS *et al.* 2012). Entretanto, esse método não foi criado para análises macroecológicas, e quando submetidos a validação com algoritmos matemáticos, geralmente apresentam muitos erros de falsa presença, ou seja, estimam a ocorrência potencial das espécies quando as mesmas não ocorrem naquela localidade (e.g., VASCONCELOS *et al.* 2012, HERKT *et al.*, 2017; RAMESH *et al.*, 2017), quase sempre superestimando a distribuição potencial das espécies, o que pode ser bastante problemático para projetos de conservação (HERKT *et al.*, 2017). Parte desses problemas envolvem a desconsideração de dados importantes,

como a heterogeneidade da paisagem e os reflexos dessa característica ambiental em relação às variáveis ambientais, que podem ser determinantes para a presença ou ausência dos animais estudados, o que é esperado quando se produz mapas como os disponibilizados pela UICN (MAINALI *et al.,* 2020). É justamente nesse aspecto de desconsiderar a heterogeneidade ambiental presente nos polígonos, e a resolução geralmente mais grosseira dos mapas, onde os MNE's conseguem elaborar mapas supostamente mais acurados de distribuição. Os MNE's usam variáveis ambientais para sua elaboração, resultando na inclusão da diversidade dos ambientes ao longo da distribuição de uma espécie, permitindo um maior refinamento dos mapas resultantes (ELITH; LEATHWICK, 2009; MAINALI *et al.,* 2020).

2 OBJETIVOS

O objetivo deste trabalho foi utilizar Modelos de Nicho Ecológicos (MNE's) para inferir a distribuição potencial das espécies de anuros da América do Sul e comparar a sobreposição espacial entre esses modelos e os mapas de especialistas fornecidos pela UICN (2020). Nossa hipótese era de que os resultados dos MNE's trariam um maior refinamento em relação às distribuições fornecidas pelos polígonos da UICN. Geralmente esses polígonos tendem a extrapolar a distribuição das espécies e os MNE's tendem a se ajustar para as localidades conhecidas por espécie, por serem limitados pelas condições ambientais destas localidades para realizar a extrapolação das distribuições das espécies. Para confirmar essas diferenças, fizemos a comparação tanto da sobreposição das distribuições como dos padrões de diversidade do número e da composição de espécies.

3 MÉTODOS

3.1 Lista de espécies

Compomos a nossa lista de anfíbios anuros da América do Sul a partir da lista de espécies compilada por DUELLMAN *et al.* (1999) e atualizada por VASCONCELOS *et al.* (2019), restringindo apenas às espécies com dados disponíveis na UICN (2020) e que também possuíam registros de ocorrências nas bases de dados online (ver item 3.2). Para garantir que apenas as espécies com distribuições majoritariamente orientadas para dentro dos limites geográficos da América do Sul fossem modeladas, nós ajustamos os polígonos da UICN ao limite da América do Sul e calculamos suas respectivas áreas. Depois disso, comparamos as áreas originais das distribuições das espécies com as áreas ajustadas ao continente sul-americano, de modo que selecionamos apenas as espécies com distribuições acima de 90% nos limites do Sul.

3.2 Ocorrências das espécies

As ocorrências das espécies de anfíbios foram obtidas de bases internacionais do *Global Biodiversity Information Facility* (GBIF, https://www.gbif.org), *VertNet* (http://vertnet.org), *iNaturalist* (https://www.inaturalist.org) e *Digitized Biocollections* (iDigBio, https://www.idigbio.org), utilizando a função "occ" do pacote *spocc* (CHAMBERLAIN, 2020), da linguagem de programação R v. 4.2.0 (R CORE TEAM, 2022), e também da base brasileira do speciesLink (https://specieslink.net/). Posteriormente, verificamos a qualidade das ocorrências, para corrigir possíveis erros taxonômicos e de geolocalização. Para isso, utilizamos funções já prontas na linguagem R para: 1) retirar dados faltantes, 2) retirar dados duplicados, 3) retirar dados que caíam em centroide e/ou sede de municípios e próximos a estradas, 4) filtrar dados por uma data específica (após 1970, devido a melhor precisão e acurácia das informações geográficas e compatibilização temporal com as bases climáticas), 5) obter uma ocorrência para o raio de ~5 km, para evitar vieses de amostragem, e por fim, 6) utilizar apenas as ocorrências para cada espécie que se situassem no limite de distribuição da UICN acrescido de um *buffer* de 500 km.

3.3 Variáveis ambientais

As variáveis climáticas foram obtidas através do CHELSA, versão 2.1 (https://chelsa-climate.org/, KARGER et al., 2017), pois esse conjunto de dados foi criado a partir de modelos de circulação global evitando, assim, os possíveis vieses decorrentes dos dados gerados por interpolação de dados de estações meteorológicas. Utilizamos as variáveis bioclimáticas, combinações temporais dos dados de temperatura (BIO1 a BIO11) e precipitação (BIO12 a BIO19) para o período de 1970-2000. Todas as variáveis ambientais descritas foram anteriormente adequadas ao limite da América do Sul. Por fim, as variáveis foram ajustadas novamente ao limite da distribuição da UICN de cada espécie, adicionado a um buffer de 500 km, para garantir que outras condições ambientais foram incluídas nos modelos, considerando sua possível distribuição pretérita (BARVE et al. 2011). Para cada conjunto de variáveis de cada espécie realizamos uma análise de Fator de Inflação de Variância (Variance Inflation Factor - VIF) considerando apenas as variáveis com VIF < 2 para reduzir a multicolinearidade (DORMANN et al., 2013), utilizando a função "vifstep" do pacote usdm (NAIMI et al., 2014), da linguagem de programação R v. 4.2.0 (R CORE TEAM, 2022).

3.4 Ajuste e avaliação dos MNE's

Neste estudo, usamos dois métodos de ajuste para os MNE's que foram usados conforme o número de coordenadas que obtivemos para cada espécie. Quando alguma espécie apresentou menos de cinco ocorrências, utilizamos um ajuste simples, considerando apenas a Distância Euclidiana das condições ambientais, segundo o método proposto por Vital *et al.* (2012). Para as espécies com mais de cinco ocorrências, utilizamos diversos métodos e depois fizemos um consenso dos mesmos: Modelos Lineares Generalizados com distribuição binomial ou *Generalize Linear Models* - GLM (MCCULLAGH; NELDER, 1989), aprendizagem de árvore de decisão ou *Classification and Regression Trees* - CART (BREIMAN et al., 1984), *Random Forest* - RF (BREIMAN, 2001), Máquina de Vetor de Suporte ou *Support Vector Machine* - SVM (VAPNIK, 2010), Maximum Entropy – MaxEnt v. 3.4.4 (PHILLIPS *et al.* 2006) e Maxlike (ROYLE *et al.* 2012). Usamos esses diferentes

algoritmos para analisar as possíveis diferenças entre os ajustes e predições (ARAÚJO; NEW, 2007).

Os modelos ajustados pelo método de Distância Euclidiana, ou seja, espécies com cinco ou menos de cinco ocorrências, não foram avaliados devido à baixa quantidade de pontos. Já os modelos ajustados para os métodos descritos acima, foram avaliados através do particionamento aleatório dos dados de ocorrência em 70% para treino e 30% para teste, sendo que essa partição foi realizada 10 vezes de modo aleatório (*bootstrap*) para cada algoritmo e para cada espécie. Dessa forma, obtemos 60 modelos (6 algoritmos × 10 réplicas) para cada espécie. Para cada ajuste, calculamos valores de AUC (*Area Under the Curve*) e TSS considerando o limite de corte de "Soma da Sensibilidade e Especificidade Máximo" (*Maximizing the Sum of Sensitivity and Specificity* - maxSSS" (ELITH *et al.* 2006, ALLOUCHE *et al.* 2006, PETERSON *et al.* 2011). Ao final, combinamos apenas as predições de cada espécie que possuíam os valores de TSS maiores que a média de todos os modelos ajustados, calculando a média dos valores de adequabilidade ponderado pelos valores de TSS (*ensemble by mean-weighted*), também computando as incertezas entre os algoritmos pelo desvio-padrão (DINIZ-FILHO *et al.*, 2009).

Utilizamos o limite de corte (*threshold*) de "Soma da Sensibilidade e Especificidade Máximo" (*Maximizing the Sum of Sensitivity and Specificity* - maxSSS (LIU; NEWELL; WHITE, 2013). Esse limite de corte foi utilizado para transformar os mapas de valores contínuos de adequabilidade em mapas binários, i.e., mapas com a presença e ausência potencial das espécies. Todos os modelos foram gerados no formato GeoTiff, com Sistema de Coordenadas Geográficas ("lat/lon") e Datum WGS 84 e resolução espacial de 0.042° (~5 km).

3.5 Avaliação da sobreposição de nicho e padrões de diversidade

Para avaliar a sobreposição da distribuição dos MNE's e dos mapas de especialistas fornecidos pela UICN, rasterizamos os polígonos da UICN com a mesma resolução dos modelos, e depois calculamos o índice de Schoener (D) (SCHOENER 1970; BROENNIMANN *et al.* 2012) de duas formas. No primeiro cenário (Dtotal), calculamos as sobreposições entre os MNE's e os polígonos considerando a área total apontada como adequada para a ocorrência das espécies conforme os modelos, considerando o buffer de 500 km, além dos limites da UICN.

Já no segundo cenário (Dmask), calculamos as sobreposições das distribuições entre os modelos e os mapas de especialistas, porém, considerando apenas os locais que estejam alocados no limite provido pelas áreas dos polígonos da UICN. Para esses dois cenários analisamos também os valores do índice Dtotal e Dmask para cada família, para cada um dos hábitos de ocupação espacial preferencial atribuídos às espécies e para cada uma das categorias de conservação das espécies definidas pela UICN.

Além das sobreposições com a área de extensão das distribuições das espécies, utilizamos o coeficiente de correlação de Kendall (K) para relacionar os índices de Dtotal e Dmask com a área de distribuição das espécies provida pela UICN. Para comparar a diversidade em cada pixel, criamos um empilhamento dos modelos ou Stacked Species Distribution Models - SSDM (CALABRESE et al., 2014) combinando os rasters dos MNE's e os rasters da UICN, e espacializamos seus valores para comparar os números de espécies preditos, inferidos pela soma das espécies em cada pixel (diversidade alfa). Para a composição de espécies (diversidade beta), nós comparamos a composição de espécies pixel a pixel, calculando o índice de dissimilaridade de Jaccard, seu complemento (similaridade = 1 - Jaccard) e seu particionamento em troca (*turnover*) e aninhamento (*nestedness*) (BASELGA, 2010; BASELGA, 2012). Todas as análises foram realizadas através da linguagem R v. 4.2.0 (R CORE TEAM, 2022), utilizando os pacotes sdm (NAIMI; ARAÚJO, 2016), além da utilização dos pacotes raster (HIJMANS et al., 2014), sf (PEBESMA, 2018) e tidyverse (WICKHAM, 2019) para manejo e visualização dos dados e betamulti para partição da diversidade beta (BASELGA; ORME, 2012).

4 RESULTADOS

4.1 Lista de espécies e ocorrências

Nossa lista final de espécies (Apêndice A) contou com 1885 espécies, porém criamos modelos para 1868 espécies (~99%), sendo que para 1150 espécies (~62%) utilizamos o método de ensemble, pois essas espécies apresentaram mais de cinco localidades distintas, enquanto para as outras 734 espécies (~38%) foi necessário aplicar o método de Distância Euclidiana, devido à ausência de ocorrências disponíveis nas fontes das quais fizemos uso. Para as espécies Adenomera coca, Chiasmocleis Alsodes monticola. lacrimae, Dendrophryniscus stawiarskyi, Dendropsophus cachimbo, Dendropsophus minimus, Eleutherodactylus planirostris, Frostius erythrophthalmus, Gastrotheca ossilaginis, Hyalinobatrachium pallidum, Mannophryne trinitatis, Pleurodema fuscomaculatum, Pristimantis boconoensis, Pristimantis urichi, Pseudopaludicola mirandae, Sphaenorhynchus bromelicola, e Tepuihyla shushupe não encontramos ocorrências que estivessem nos limites do polígono da UICN e no buffer de 500 km e, portanto, os modelos para essas espécies não foram criados. O Quadro 1 resume a quantidade de modelos gerados para cada família e o método utilizado.

Família	Distância Euclidiana	Ensemble
Allophrynidae	0	1
Alsodidae	4	18
Aromobatidae	28	33
Batrachylidae	4	9
Brachycephalidae	16	15
Bufonidae	76	101
Calyptocephalellidae	1	3
Centrolenidae	53	49
Ceratophryidae	0	11
Craugastoridae	216	245
Cycloramphidae	15	13

Quadro 1 -	Quantidade de	espécies r	modeladas	por família e t	ipo de método.

Dendrobatidae	60	73
Eleutherodactylidae	3	8
Hemiphractidae	38	40
Hylidae	96	276
Hylodidae	17	19
Leptodactylidae	22	124
Microhylidae	15	35
Odontophrynidae	7	21
Phyllomedusidae	14	32
Pipidae	3	4
Ranidae	0	2
Rhinodermatidae	1	2
Telmatobiidae	29	16
Total	718	1150

4.2 Modelos e avaliação

Para os 1150 modelos ajustados utilizando o método de *ensemble*, os valores de AUC (0,982 \pm 0,023) e TSS (0,914 \pm 0.093) médios e desvios padrões, respectivamente, denotam bons ajustes dos modelos. A Tabela 1 apresenta os valores médios e o desvio padrão para as mesmas métricas (AUC e TSS), para cada família, mostrando que os valores foram elevados para todas elas, e acima do que é considerado como um modelo confiável e com bom poder preditivo (AUC > 0,75 e TSS > 0,5) (ELITH et al. 2006, ALLOUCHE et al. 2006).

Tabela 1 -	AUC's e	TSS's	médios	e desvios	padrão	por	famíia
	/ 00 3 0	1000	mouloo	C 000100	puuruo	por	lanna

Família	Número de espécies	AUC médio	AUC desvio padrão	TSS médio	TSS desvio padrão
Allophrynidae	1	0.97	0	0.827	0
Alsodidae	18	0.996	0.006	0.963	0.049
Aromobatidae	33	0.986	0.021	0.934	0.078
Batrachylidae	9	0.991	0.01	0.936	0.066

Brachycephalidae	15	0.973	0.031	0.884	0.074
Bufonidae	100	0.985	0.02	0.926	0.088
Calyptocephalellidae	3	0.998	0.004	0.988	0.021
Centrolenidae	49	0.988	0.018	0.932	0.084
Ceratophryidae	11	0.975	0.037	0.888	0.131
Craugastoridae	245	0.992	0.014	0.953	0.067
Cycloramphidae	13	0.99	0.017	0.946	0.073
Dendrobatidae	73	0.988	0.016	0.93	0.072
Eleutherodactylidae	8	0.992	0.012	0.956	0.066
Hemiphractidae	40	0.995	0.013	0.975	0.055
Hylidae	276	0.976	0.026	0.885	0.1
Hylodidae	19	0.993	0.011	0.966	0.052
Leptodactylidae	124	0.966	0.027	0.846	0.1
Microhylidae	35	0.97	0.028	0.87	0.102
Odontophrynidae	21	0.976	0.02	0.884	0.086
Phyllomedusidae	32	0.979	0.024	0.893	0.104
Pipidae	4	0.965	0.017	0.854	0.062
Ranidae	2	0.972	0.04	0.882	0.167
Rhinodermatidae	2	0.995	0.007	0.948	0.074
Telmatobiidae	16	0.996	0.009	0.974	0.055
Total	1150	0.982	0.023	0.914	0.093

4.3 Sobreposição de nicho

Nossas análises de sobreposição da distribuição das espécies pelo cálculo do índice de Schoener, entre os MNE's e os limites da UICN, mostraram resultados discrepantes entre os cenários Dtotal e Dmask. No cenário Dtotal, observamos que houve majoritariamente baixa sobreposição das distribuições das espécies (Figura 2), o que é evidenciado pelos valores da média (x = 0,15) e mediana (x = 0,07),

sendo que 75% das espécies tiveram valor de Dtotal abaixo de 0,25, e dentro desse grupo mais de 600 espécies (~32%) resultaram em Dtotal igual a zero. Para o cenário Dmask, obtivemos resultados distintos (Figura 3), com os valores de Dmask variando pouco e apresentando um padrão relativamente heterogêneo em comparação ao visto em Dtotal (sd = 0,32). A média nesse cenário é levemente desviada à direita (x = 0,61), assim como a mediana (x = 0,62), sendo que a maior frequência do valor de Dmask foi igual a um, cerca de 370 espécies (~20%).

Figura 2. Histograma da frequência absoluta da sobreposição das distribuições de espécies entre as distribuições geradas pelos MNE's e mapas de especialistas da UICN, onde 1,00 corresponde a cem por cento de sobreposição e 0,00 a nenhuma sobreposição.

Fonte: Elaborado pelo autor.

Figura 3 - Histograma da frequência da sobreposição das distribuições de espécies entre as distribuições geradas pelos MNE's e mapas de especialistas da UICN cortada para dentro dos limites dos polígonos da UICN, onde 1,00 corresponde a cem por cento de sobreposição e 0,00 a nenhuma sobreposição.

4.3.1 Sobreposição e área de distribuição

A sobreposição das distribuições em função da área no cenário Dmask (Figura 4), não nos mostrou um padrão evidente, sendo que a correlação neste cenário foi baixa e negativa, mas significativa (k = -0,25; p < 0,05). Para o cenário Dtotal (Figura 4), a sobreposição das distribuições em função da área apresentou uma relação positiva, mas com correlação moderada e significativa (k = 0,53; p < 0,05). Apesar da correlação ter sido baixa, notamos alguns padrões: a sobreposição em função da área no cenário Dtotal (Figura 4) mostra que para as espécies com distribuições das áreas menores, os valores de Dtotal se concentram próximos a zero, enquanto o oposto ocorre no cenário Dmask. Identificamos que para 424 espécies analisadas, 366 apresentaram valores de Dtotal próximos ou iguais a zero

e 389 apresentaram valores de Dmask próximos ou iguais a um, 270 apresentaram ambos os valores de Dtotal e Dmask próximos aos extremos. Dessas 424 espécies, 390 (~92%) possuem área total do polígono de até 10.000 km², representando quase 40% das espécies dentro desses limites e cerca de 20% de todas as espécies analisadas, na maioria são espécies com poucos dados de ocorrências e restritas a pequenas áreas.

Figura 4 - Gráfico de dispersão com a relação da sobreposição de nicho em relação à área de extensão em log10 km². À esquerda cenário Dtotal e à direita cenário Dmask.

Fonte: Elaborado pelo autor.

4.3.2 Sobreposição por família

Ao compararmos as sobreposições das áreas constituídas pelos polígonos da UICN em relação à área total entregue por nossos MNE's, notamos a mesma tendência à baixa sobreposição entre os resultados trazidos pelos dois métodos no cenário Dtotal (Figura 5). Ceratophryidae apresentou a mediana mais alta para os valores de Dtotal (~0,40), seguida das famílias Leptodactylidae (~0,30) e Calyptocephalellidae (~0,25), respectivamente. As famílias que apresentaram valores de Dtotal mais baixos foram Alsodidae, Batrachylidae, Centrolenidae, Cycloramphidae, Eleutherodactylidae, Hemiphractidae, Hylodidae e Telmatobiidae.

Quando analisamos os resultados da sobreposição das distribuições das espécies por família no cenário Dmask (Figura 6), observamos uma alta sobreposição para a maioria das famílias, de modo que apenas Allophrynidae, Brachycephalidae, Odontophrynidae, Phyllommedusidae e Ranidae apresentaram

medianas abaixo da média (x = 0,62), Rhinodermatidae obteve a maior mediana para os valores de Dmask (\sim 0,8).

Figura 5: Boxplot com a comparação da sobreposição das distribuições de espécies entre as distribuições geradas pelos MNE's e mapas de especialistas da UICN por família, onde 1,00 corresponde a cem por cento de sobreposição e 0,00 a nenhuma sobreposição.

Fonte: Elaborado pelo autor.

Figura 6 - Boxplot com a comparação da sobreposição das distribuições de espécies entre as distribuições geradas pelos MNE's e mapas de especialistas da UICN por família para dentro dos limites dos polígonos, onde 1,00 corresponde a cem por cento de sobreposição e 0,00 a nenhuma sobreposição.

Fonte: Elaborado pelo autor.

4.3.3 Sobreposição por tipo de hábito

Comparamos também as sobreposições das distribuições por hábito das espécies, classificadas como aquáticas, terrestres ou terrestres e aquáticas. Observamos uma tendência inversa entre os cenários Dtotal e Dmask, sendo que no primeiro (Figura 7), os animais de hábitos estritamente aquáticos apresentaram os menores valores para Dtotal, com mediana próxima a zero para todo o grupo. Animais de hábitos terrestres também tiveram baixas sobreposições, com um desvio da mediana abaixo da média, mas ainda próximo a zero, mas com máximo mais alto (~0,4). Para o grupo de animais com hábitos terrestres e aquáticos vimos uma variação maior para os valores de Dtotal, com máximo próximo a 0,5 e mediana mais alta dentre os três grupos (~0,10). No segundo cenário (Figura 8), vemos uma inversão da tendência, onde os animais de hábitos aquáticos apresentaram

sobreposições mais altas, com mediana acima de 0,75 para os valores de Dmask e intervalo interquartílico entre 0,4 e 1. Animais de hábitos terrestres apresentaram mediana para os valores de Dmask próximo a 0,6, com um intervalo interquartílico mais amplo $(0,3\sim0,99)$ do que os animais estritamente aquáticos, e, por fim, animais com hábitos aquáticos e terrestres apresentaram a menor mediana para os valores de Dmask (~0,62), com intervalo interquartílico aproximadamente entre 0,37 e 0,82.

Figura 7 - Boxplot com a comparação da sobreposição das distribuições de espécies entre as distribuições geradas pelos MNE's e mapas de especialistas da UICN por hábito.

Fonte: Elaborado pelo autor.

Figura 8 - Boxplot com a comparação da sobreposição das distribuições de espécies entre as distribuições geradas pelos MNE's e mapas de especialistas da UICN para dentro dos limites dos polígonos por hábito.

Fonte: Elaborado pelo autor.

4.3.4 Sobreposição por categoria de ameaça

Analisamos também a sobreposição das distribuições entre os dois métodos por categoria de ameaça, seguindo os critérios utilizados pela própria UICN, sendo eles: Pouco Preocupante (*Least Concern* - LC); Quase Ameaçada (*Near Threatened* - NT); Vulnerável (*Vulnerable* - VU); Em Perigo (*Endangered* - EN); Criticamente Ameaçada (*Critically Endangered* - CR); Extinto (Extinct - EX) e Dados Insuficientes (*Data Deficient* - DD). Para o cenário Dtotal (Figura 9), podemos observar que a categoria de menor preocupação (LC) apresenta a mediana para o índice Dtotal mais elevada dentre todas as categorias (~0,25), acima da média (x = 0,15). Entretanto, conforme se aumentou o grau de risco, vimos sobreposições decrescentes, as medianas de espécies categorizadas como NT e VU ficaram próximas a 0,06, enquanto os animais tidos pela UICN como EN, CR e DD ficaram próximas a zero. No cenário Dmask (Figura 10) vemos que a categoria LC

apresentou a menor mediana (~0,5), os animais tidos como NT tiveram a maior variação para os valores de Dmask que vão de ~0,25 a ~0,90, com mediana de ~0,60. A categoria VU ficou com mediana próxima a 0,75. Os animais classificados como EN, CR e DD possuíam variações semelhantes para os valores de Dmask, com medianas próximas a 0,80, 0,70 e 0,87, respectivamente.

Figura 9: Boxplot com a comparação da sobreposição das distribuições de espécies entre as distribuições geradas pelos MNE's e mapas de especialistas da UICN por nível de ameaça, da

Fonte: Elaborado pelo autor.

Figura 10 - Boxplot com a comparação da sobreposição das distribuições de espécies entre as distribuições geradas pelos MNE's e mapas de especialistas da UICN por nível de ameaça, dentro dos limites dos polígonos. Da esquerda para direita: Least Concern (LC); Near Threatened (NT); Vulnerable (VU); Endangered (EN); Critically Endangered (CR); Extinct (EX) e Data Deficient (DD). Onde 1,00 corresponde a cem por cento de sobreposição e 0,00 a nenhuma sobreposição.

4.4 Padrões de diversidade

4.4.1 Diversidade Alfa

Ao criarmos os mapas para retratar a diversidade alfa, obtivemos uma tendência onde os MNEs superestimaram a riqueza de espécies para regiões mais diversas em relação à sobreposição dos polígonos fornecidos pela UICN. Essa superestimativa concentrou-se na região central da Mata Atlântica, que compreende boa parte das unidades de conservação presentes na região, como o Parque Estadual da Serra do Mar, Parque Nacional da Serra da Bocaina, Parque Nacional da Serra dos Órgãos, Parque Nacional do Itatiaia, mosaico de unidades de conservação da Serra da Mantiqueira, entre outras. Os modelos também apontaram resultados discrepantes de riqueza máxima (~200) por toda a extensão da região montanhosa no oeste da Colômbia e Equador, até o noroeste peruano, região que sob a análise dos polígonos apresenta valores de diversidade máxima opostas aos valores inferidos pelos modelos. Observando as sobreposições dos polígonos fica evidente um viés geopolítico dos resultados, onde é possível notar os limites de estados e países. Dessa forma, os mapas da UICN podem superestimar ou subestimar a diversidade alfa em regiões delimitadas por questões geopolíticas inteiras, sem considerar os gradientes das variáveis ambientais que compõem os nichos.

Por outro lado, o empilhamento dos modelos evidenciaram esses gradientes, como podemos observar nos mapas da Figura 11. Nele notamos o aumento da riqueza máxima próximo e ao longo das margens dos grandes rios amazônicos, também notamos locais pouco diversos em áreas conhecidas pelas condições climáticas secas como as regiões leste do estado do Maranhão, sudoeste do estado do Piauí e nordeste do Mato Grosso do Sul inserido nos biomas da Caatinga e Cerrado. A diagonal seca pode ser percebida tanto através dos polígonos sobrepostos, quanto com os nossos modelos, caracterizada por áreas com menor número de espécies, principalmente quando comparamos com os biomas adjacentes a esses, como as já referidas Mata Atlântica e Amazônia. Figura 11 - Padrões geográficos da diversidade alfa para anuros da América do Sul. À direita diversidade alfa gerada pela sobreposição das distribuições potenciais geradas pelos MNE's (S-SDM - *Stacked Species Distribution Models*) para cada pixel e à esquerda diversidade alfa gerada pela sobreposição das distribuições apontadas pelos polígonos da UICN.

Fonte: Elaborado pelo autor.

4.4.2 Diversidade Beta

A similaridade entre os pixels foi relativamente baixa (S = 0,274) entre os resultados dos dois métodos. O aninhamento, na cor vermelha, aparece em praticamente toda a região andina, provavelmente pela falta de ocorrências por parte dos polígonos, dessa forma, acumulando espécies inferidas pelos modelos. Por fim, observamos o predomínio do componente de troca (0,551) entre os pixels, que pode ser notado principalmente em regiões onde os modelos subestimaram a diversidade alfa em relação aos mapas da UICN, como na área de transição entre o Cerrado e a Amazônia ou mesmo entre o Cerrado e a Caatinga, além da região noroeste da floresta amazônica (Figura 12). As regiões indicadas, por possuírem similaridade mais proeminente, como o pantanal, provavelmente apresentam esse padrão por conta das espécies presentes nessas regiões estarem demonstrando menos distinções entre a distribuição oferecida pelos modelos em relação aos polígonos

providos pela UICN, sendo assim, as comunidades entre os dois métodos permanecem similares.

Figura 12 - Comparação entre os padrões geográficos do particionamento da diversidade beta baseada nas distribuições de espécies de anuros da América do Sul pelos modelos de nicho ecológico e polígonos da UICN. Em azul a similaridade entre os pixels (S = 1 - Jaccard), em vermelho o aninhamento (*nestedness*) e em verde a troca de espécies (*turnover*). Abaixo a sobreposição dos três mapas compondo o padrão geográfico da diversidade beta para anuros da América do Sul gerados pelos S-SDM e sobreposição dos mapas de especialistas da UICN.

Fonte: Elaborado pelo autor.

Figura 13 - Gráfico triangular da comparação entre os pares de pixels gerados pelo empilhamento dos modelos de distribuição de espécies e polígonos da UICN de anuros da América do Sul. Sendo que cada ponto representa um par de pixels, O ponto azul no centro do gráfico é o centroide dos valores das médias de troca (x = 0,551), aninhamento (x = 0,174) e similaridade (x = 0,274).

S = 1 - Jaccard

Fonte: Elaborado pelo autor.

5 DISCUSSÃO

Obtivemos resultados que indicaram baixas sobreposições das distribuições das espécies de anuros da América do Sul entre os polígonos produzidos através dos mapas de especialistas e fornecidos pela UICN, em relação aos Modelos de Nicho Ecológico. Porém, houve altas sobreposições quando consideramos apenas as áreas inferidas pelos modelos limitadas às áreas de seus respectivos polígonos da UICN. Dessa forma, não podemos afirmar que os polígonos da UICN superestimam as distribuições das espécies em relação às distribuições potenciais dos MNE's (HURLBERT; WHITE, 2005, HURLBERT; JETZ, 2007, HAWKINS *et al.,* 2008, GASTON; FULLER, 2009, HERKT *et al.*, 2017).

No quadro 1, é possível notar as diferenças nos números de espécies que possuem dados de ocorrência disponíveis em bases online de forma satisfatória para o uso do ensemble entre os diversos modelos utilizados, assim como é possível notar quais são as famílias que apresentam mais espécies que carecem de dados de ocorrência. Assim, as espécies desse segundo grupo apontam para a necessidade de um maior esforço por parte da comunidade em disponibilizar esses dados, ou mesmo, em caso de grupos com baixa incidência de registros, investir na mobilização de pesquisadores visando melhorar nosso conhecimento a respeito destas famílias. Um exemplo são os Allophrynidae, que apesar de ser uma família pouco diversa, representada até o momento por apenas três espécies, não conseguimos dados de ocorrência para duas delas. Sabemos que Allophryne relicta foi descrita recentemente e se tem conhecimento apenas de uma localidade para este anuro, na Bahia (CARAMASCHI et al. 2013). Contudo, A. resplendens é uma espécie mais estudada e com mais de uma localidade (CASTROVIEJO-FISHER et al. 2012), que não se encontram acessíveis via os métodos que utilizamos, inviabilizando a continuidade do trabalho com esta espécie. Outro exemplo que chama atenção são os Ceratophrvidae, pois parte significativa das 12 espécies foram contempladas, de modo que conseguimos usar os modelos, utilizando o ensemble para cerca de 11 destes animais, restando apenas Ceratophrys testudo, uma espécie conhecida apenas para sua localidade-tipo, em Pastaza, no Equador, e por isso não possuímos dados de ocorrência disponíveis para a mesma (MERCADAL, 1998). E existem outros casos, como as famílias Bufonidae, Craugastoridae e Dendrobatidae, por exemplo, que possuem várias espécies
satisfazendo nosso crivo para podermos rodar os modelos e posteriormente efetuar o ensemble deles, enquanto há inúmeros táxons, porém em menor quantidade, que necessitam de mais dados de ocorrências sendo disponibilizados. Essa característica dos dados pode ser ocasionadas por inúmeras razões, dentre elas: o hábito de algumas espécies e a detectabilidade associada aos seus hábitos; a distribuição naturalmente restrita de algumas dessas espécies; o tempo existente entre o momento da descrição destas espécies e o presente trabalho; a falta de organização e disponibilização online dos dados de ocorrências para essas espécies; espécies que podem estar sem registros recentes, e por isso não há coordenadas geográficas para as mesmas, apenas localidades descritas por pesquisadores pré-popularização do uso de técnicas que envolvem georreferenciamento; animais em declínio populacional; animais possivelmente raros e/ou extintos, entre outros (IZECKSOHN, 1993; BROWN et al. 2008; MACIEL; NUNES, 2010; DALMOLIN et al. 2014)

Dessa forma, é necessário salientar as limitações do uso dos modelos de nicho ecológico. Um dos requisitos mais importantes dessa abordagem é a quantidade razoável de ocorrências disponíveis, visto que o número de ocorrências influencia diretamente na resposta preditiva dos modelos, pois quanto mais pontos, maior a precisão destes (STOCKWELL; PETERSON, 2002), além de ser necessário que esses pontos de ocorrências tenham qualidade e acurácia, pois os modelos são altamente dependentes de ocorrência assertivos (NAIMI *et al.*, 2014) com o mínimo viés de amostragem, (proximidade a centros urbanos, rodovias, ocorrências duplicadas, entre outros). Esse ponto é um grande desafio, pois muitos dos dados disponíveis não são adequados para essa finalidade devido ao processo de coleta dos dados que corresponde a um já estabelecido viés amostral (OLIVEIRA *et al.*, 2016), mas também pelos erros associados à taxonomia, que ocorrem com certa frequência em dados extraídos de grandes bancos de dados disponíveis, como, por exemplo, o GBIF, do qual fizemos uso (FICETOLA *et al.*, 2013).

Por outro lado, os polígonos fornecidos pela UICN baseados em mapas de especialistas, apesar de fundamentados em diversos critérios para inferir a extensão de ocorrência das espécies, não atendem às necessidades de análises macroecológicas por apresentarem muitos erros de comissão, tais erros influenciam diretamente em análises de diversidade e composição das comunidades. Em comparação aos modelos de nicho ecológico, os polígonos não capturam de forma

probabilística as condições ideais para a ocorrência das espécies, vinculado à interpretação humana dos dados de onde elas ocorrem (HERKT *et al.*, 2017). Além disso, encontramos no banco de dados da UICN diversos polígonos que claramente não se baseiam em condições adequadas possuem muita subjetividade, e provavelmente não foram desenvolvidos seguindo critérios de especialistas, pois convergem com limites geopolíticos, como no caso de quatro espécies que analisamos, cujo os polígonos correspondem exatamente aos limites do estado do Acre. Além desses casos mais óbvios, identificamos espécies cujos limites correspondem aos limites de diversas áreas de proteção, isso ocorre porque, como dito anteriormente, os mapas de especialistas nem sempre são desenhados visando análises macroecológicas, nesses casos, esses mapas possuem um teor informativo, indicando a localidade onde esses animais podem ser encontrados, o que pode ter inúmeras aplicações e ser suficiente para políticas públicas de conservação das espécies.

Essas limitações dos dois métodos influenciaram diretamente nossos resultados, visto que não foi possível obter comparações satisfatórias entre os métodos, já que as áreas dos modelos e as áreas dos polígonos não ficaram devidamente ajustadas e sobrepostas para a maioria das espécies com poucos pontos de ocorrência. Isso ficou explícito quando comparamos os índices de sobreposição de Schoener nos dois cenários testados (Dtotal e Dmask), onde notamos a inversão da tendência do índice entre os dois cenários, sendo que Dtotal apresentou tendência a zero para o índice, ou seja, alta divergência entre os métodos, e Dmask apresentou tendência a um, apontando alta convergência entre os métodos. Nessa situação, inicialmente, podemos interpretar que os mapas de especialistas e modelos de nicho ecológico substancialmente divergem entre si, indicando erroneamente que um dos dois métodos pode estar absolutamente equivocado. Contudo, por se tratar de uma análise com dados secundários, precisamos buscar nos resultados informações complementares para entender guais fatores estão contribuindo para essas tendências tão discrepantes. Correlacionando os resultados discriminados pelos valores da área, podemos notar que no primeiro e no segundo cenário que os valores do índice D que tendem a zero (Dtotal) ou a um (Dmask), em sua grande maioria, correspondem a espécies que ocorrem em áreas de até 10.000 Km². Observando os resultados por família, observamos a mesma tendência de inversão entre os cenários, e fica claro que famílias com gêneros que ocorrem em áreas restritas, seguem esse mesmo padrão. O mesmo ocorre quando comparamos as sobreposições por hábito, os animais classificados pela UICN com hábitos estritamente aquáticos apresentam as mais baixas sobreposições no cenário Dtotal e as mais altas no cenário Dmask.

Esse padrão é representado principalmente por algumas espécies da família Telmatobiidae, que são animais geralmente associados aos ambientes aquáticos de lagos, córregos, rios e até lagunas nos pontos mais elevados dos Andes, e com isso, várias das espécies deste grupo distinto de anuros possuem suas distribuições restritas, e, portanto, uma relativa pequena área de ocorrência (BARRIONUEVO, 2016). Enquanto espécies de hábitos terrestres apresentam valores, em média, invertidos para esses índices, justamente pela presença maior de espécies onde as suas áreas de ocorrência são mais amplas. Para os resultados discriminados por categoria de risco de extinção da UICN, vemos que no cenário Dtotal, os índices mais baixos ocorrem para espécies nas categorias mais ameaçadas (CR e EN), mas também em espécies categorizadas como DD, em contrapartida, no cenário Dmask são essas mesmas categorias as que apresentam os maiores índices. Esse padrão ocorre devido à quantidade de pontos de ocorrências disponíveis para espécies raras e que ocorrem em áreas reduzidas, sendo que a maioria dessas espécies têm em comum, ocorrer em áreas de até 10.000 km², estar classificada como EN, CR ou DD. Essa condição da área de ocorrência é inclusive parte importante do critério de decisão da UICN no momento de tomar a decisão por qual categoria a espécie avaliada fará parte, já que animais que possuem distribuição mais restrita tendem a ser mais suscetíveis a perturbações ambientais, e, portanto, suas populações são mais sensíveis (RAMOS et al. 2018).

Os modelos apresentaram um padrão heterogêneo para diversidade alfa e indicaram áreas de maior riqueza não prevista com a sobreposição dos polígonos, como, por exemplo, o caso da alta diversidade alfa ao longo dos Andes, mesmo sendo um padrão já reconhecido e atribuído à grande quantidade de ambientes diferentes ao longo da cordilheira (DUELLMAN, 1999; BARRIONUEVO, 2016). Os polígonos quando sobrepostos apresentaram um padrão de diversidade mais homogêneo e com baixa definição por não considerarem a heterogeneidade das paisagens e consequentemente das variáveis ambientais. Dessa forma, os modelos trazem uma resolução visualmente mais refinada em relação aos polígonos da UICN, mas não necessariamente mais precisa. Contudo, vale ressaltarmos a

eficiência dos dois métodos em ilustrar a diversidade alfa de anuros dentro da América do Sul (VASCONCELOS *et al.*, 2012), apesar da resolução mais fina que os modelos trazem como resposta em comparação ao uso dos polígonos da UICN, ao compararmos os mapas fica evidente que os dois métodos são capazes de nos apresentar áreas com maior e menor diversidade de anfíbios em quase que todo o continente. Ainda assim, se faz necessário investigar qual a origem de algumas lacunas apresentadas para o caso dos polígonos da UICN, como o caso já dito da região Andina, da Colômbia e do Equador. É possível também observar que outro espaço fica subestimado diante dos polígonos da UICN, a região de Los Lagos e Aysén, no Chile, estão apontadas como uma área mais diversa pelos MNEs, o que faz sentido, por se tratar de uma região pantanosa e florestais, onde existem famílias quase que endêmicas destes locais, como os Calyptocephalellidae e os Rhinodermatidae (BOURKE et al. 2012; VITT; CALDWELL, 2014; MORA et al. 2021).

Uma limitação um tanto particular dos MNEs é a incapacidade de lidar com espécies insulares e contabilizar esses animais nas análises, três exemplos de anfíbios endêmicos de ilhas que não constam nos nossos resultados, e assim como outros, podem gerar uma diferença entre os mapas de diversidade alfa são as pererecas: *Scinax alcatraz*, espécie que habita bromélias da ilha de Alcatrazes, *Scinax faivovichi*, espécie documentada apenas para uma pequena ilha de Porcos Pequena, em Ubatuba, *Scinax peixotoi*, também encontrada apenas em ilha, no caso, a ilha da Queimada Grande, todas presentes no estado de São Paulo, e consideradas endêmicas da Mata Atlântica (BRASILEIRO et al. 2007A; BRASILEIRO et al. 2007B). Isso ocorre devido à ausência de dados relacionados às variáveis ambientais destas pequenas ilhas.

As características dos mapas de diversidade alfa geradas pelos dois métodos, podem explicar os padrões de similaridade, troca e aninhamento. Devido à homogeneidade da diversidade alfa inferida pelos polígonos sobrepostos, podemos observar que a similaridade e o componente troca, destacam a capacidade dos ENM's de capturar as variações ambientais, podemos observar similaridades ao longo dos grandes rios amazônicos e outras regiões onde os SSDM inferem valores de riqueza por pixel próximos aos dos polígonos. A presença do componente troca, pode ser observada em áreas onde os polígonos, superestimaram a diversidade alfa em relação aos SSDM que por sua vez, apontaram distribuições potenciais

respeitando a heterogeneidade dos ambientes, essa característica é evidenciada em regiões de transição entre as fitofisionomias, como as que ocorrem entre o Cerrado e da Amazônia ou mesmo entre o Cerrado e a Caatinga, além da região próxima da divisa entre o estado do Amazonas, no Brasil, e a Venezuela, onde ocorre uma fitofisionomia campestre, as campinaranas, que surgem a partir do solo arenoso, tornando o ambiente distinto, com árvores mais baixas, menores em espessura e com áreas de vegetação rasteira (MENDONÇA et al. 2015), esse ambiente ainda é pouco estudado (AZEVEDO et al. 2021). Ainda nessa região norte do Brasil, fazendo limite com a Venezuela e a Guiana, também há áreas de troca, isso deve caracterizar a presença dos Tepuis, formações rochosas tabulares que possuem fauna e flora em seus platôs bastante distintos e específicos (KOK, 2009). Diferente do que ocorre nos Andes, estes locais provavelmente não apresentam tanto aninhamentos de espécies por conta da declividade destas formações geológicas. Assim como o ambiente de Llanos, na Venezuela, onde há uma fisionomia campestre, que se assemelha às savanas e ao Cerrado, podendo ser uma das razões de haver trocas bem demarcadas nessa área entre as comunidades (WERNECK, 2011).

Observando os padrões de diversidade alfa inferidos pelos SSDM, podemos notar um ajuste desses modelos à ambientes mais elevados, dessa forma, temos o aninhamento de espécies das distribuições dos polígonos da UICN sobrepostos em relação aos SSDM. Esse componente pode ser observado ao longo de toda a região Andina, destoando drasticamente de grande parte dos resultados ao longo do continente. Provavelmente devido às altitudes elevadas das cordilheiras, que faz com que espécies que geralmente habitam as regiões de sopé sejam alocadas com espécies que são endêmicas e próprias das áreas mais elevadas da cordilheira. Outras áreas que se mostraram com padrão de aninhamento em destaque foi a região que coincide com o Planalto da Borborema, no nordeste brasileiro, esse planalto é o que caracteriza a separação da Mata Atlântica nordestina com a caatinga, é neste local que existe uma fitofisionomia de transição entre esses dois grandes biomas, o agreste, e por conta da altitude do Planalto em si, há florestas relictuais mais úmidas ao longo dessa área, o que reflete na diversidade de anfíbios na região (FREITAS et al. 2019). Talvez, por se tratar de uma zona de ecótono e associada a uma variação altitudinal relevante inclusive para definir regimes de chuvas para o interior da região nordeste do Brasil, o planalto da Borborema pode apresentar uma zona de acúmulo de fauna entre esses dois biomas distintos, tanto no seu aspecto latitudinal, longitudinal e altitudinal. Ainda sobre a região Nordeste do Brasil, conseguimos ver alguns pontos avermelhados no mapa da Figura 12, na porção mais ao norte do local onde está o estado do Ceará, essas pequenas manchas avermelhadas, indicando alta taxa de aninhamento entre as comunidades inferidas pelos dois métodos, coincidem com um dos ambientes mais ricos em espécies desta região, os brejos de altitude associados ao Maciço de Baturité, planalto de Ibiapaba, Serra de Maranguape e Aratanha, locais em que sabidamente existe um acúmulo de espécies que distingue esses ambientes das comunidades de anfíbios presentes na Caatinga *stricto sensu* (CASTRO et al. 2019; LOEBMAN; HADDAD, 2010), inclusive com representantes que estão hoje mais relacionados aos biomas amazônicos e mata atlântica (BORGES-NOJOSA et al. 2017). O Cerrado, um dos biomas mais importantes do Brasil e considerado hotspot de biodiversidade, também demonstrou possuir algumas regiões onde há aninhamentos mais evidentes.

A similaridade que conseguimos detectar para a América do Sul tende a estar mais presente em ambientes onde a vegetação é mais aberta, como a região dos pampas e campos sulinos, o pantanal, os chacos, a própria caatinga *stricto sensu* e porções do cerrado. Esse padrão pode estar associado ao fato de que nestes ambientes as espécies de anuros são menos restritas e, de modo geral, podem ser mais detectáveis durante os períodos reprodutivos. Algumas regiões não constam nos mapas de diversidade beta, como o deserto do Atacama, e parte dos campos da Patagônia, isso se dá devido ao baixo número de espécies nessas duas regiões (ÚBEDA; GRIGERA, 2007; QUEZADA et al. 2008; GHIRARDI et al. 2014).

Nossas comparações dos padrões geográficos de diversidade alfa e beta, apesar de uma abordagem simplista, apontaram como as sobreposições de polígonos de mapas de especialistas diferem dos SSDM, e devem ser usadas com cautela por parecerem pouco adequadas para análises macroecológicas, por outro lado, destacamos a capacidade dos ENM's de capturar a heterogeneidade intrínseca dos ambientes, elemento essencial para análises mais refinadas desses padrões. Se desconsiderarmos parte das espécies que ocorrem em áreas com até 10.000 km², das quais muitas são raras e/ou possuem poucos dados de ocorrência, e ambos os métodos inferem distribuições substancialmente diferentes, os MNE's podem inferir localidades adequadas para a ocorrência das espécies além dos limites

estabelecidos pelos polígonos fornecidos pela UICN, corrigindo eventuais erros de omissão dos mapas de especialistas, quando não inferem em áreas nos limites dos polígonos, há uma possível correção dos erros de comissão.

Dessa forma, observamos que os modelos provavelmente exercem um papel fundamental ao refinar as localidades adequadas para as ocorrências das espécies, que nesses casos, sim, os polígonos fornecidos pela UICN geralmente superestimam as distribuições dos anfíbios anuros sul americanos. Contudo, os mapas gerados a partir do conhecimento de especialistas não são dispensáveis, pois podemos integrá-los objetivamente e sistemática aos modelos climáticos pode ser uma abordagem interessante para gerar mapas mais precisos (CALIXTO-PÉREZ et al., 2018, MAINALI *et al.*, 2020, MEROW et al., 2022), considerando interações bióticas, capacidade de locomoção, histórico da distribuição da espécie, entre outras características que nem sempre são explicadas apenas com dados de variáveis climáticas.

6 CONCLUSÃO

Obtivemos modelos de nicho ecológico para a maioria das espécies de anfíbios anuros da América do Sul e os comparamos com seus respectivos polígonos fornecidos pela UICN, construindo mapas para avaliar a sobreposição e comparamos a diversidade alfa (número de espécies) e beta (composição de espécies) desses dois métodos. Nossos resultados confirmaram que os polígonos fornecidos pela UICN geralmente superestimam as distribuições das espécies em relação aos modelos, que por sua vez se ajustam melhor à heterogeneidade dos ambientes, apontando áreas de comissão nos polígonos, além de fornecerem gradientes interessantes para análises de diversidade em comparação às sobreposições de mapas de especialistas. Entretanto, muitos modelos superestimaram a distribuição das espécies em áreas que estavam muito distantes dos polígonos e sem registros de ocorrência das espécies. Destacamos ainda a necessidade do ajuste ou calibração dos modelos para espécies que ocorrem em áreas reduzidas, de até 10.000 km², como o uso de ESM's (Ensemble of Small Models) (LOMBA et al., 2010, BREINER et al., 2015), por exemplo, e a integração do uso de mapas de especialistas e modelos de nicho ecológico adequadamente (CALIXTO-PÉREZ et al., 2018, MAINALI et al., 2020, MEROW et al., 2022). Dessa forma, aconselhamos o uso de MNE's sempre que possível para estudos macroecológicos, biogeográficos e principalmente sua aplicação em planos de conservação, mas também considerando uma integração com os polígonos da UICN quando os modelos não tiverem ajustes satisfatórios.

REFERÊNCIAS

- ALLOUCHE, O.; TSOAR, A.; KADMON, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS): Assessing the accuracy of distribution models. Journal of Applied Ecology, v. 43, n. 6, p. 1223–1232, 12 set. 2006.
- AMADO, T. F. et al. Body size distributions of anurans are explained by diversification rates and the environment. **Global Ecology and Biogeography**, v. 30, n. 1, p. 154–164, jan. 2021.
- AMADO, T. F.; BIDAU, C. J.; OLALLA-TÁRRAGA, M. Á. Geographic variation of body size in New World anurans: energy and water in a balance. **Ecography**, v. 42, n. 3, p. 456–466, mar. 2019.
- ARAUJO, M.; NEW, M. Ensemble forecasting of species distributions. **Trends in Ecology & Evolution**, v. 22, n. 1, p. 42–47, jan. 2007.
- AZEVEDO, W. S.; OLIVEIRA, A. M.; COSTA, E. R. Herpetofauna from two locations in the state of Roraima, Amazon Rainforest, Brazil. **Herpetology Notes**, v. 14, p. 1417-1428. 2021.
- BARRIONUEVO, J. S. Frogs at the summits: phylogeny of the Andean frogs of the genus *Telmatobius* (Anura, Telmatobiidae) based on phenotypic characters. **Cladistics**, v. 0, p. 1-28. 2016.
- BARVE, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, v. 222, n. 11, p. 1810–1819, jun. 2011.
- BASELGA, A. Partitioning the turnover and nestedness components of beta diversity: Partitioning beta diversity. **Global Ecology and Biogeography**, v. 19, n. 1, p. 134–143, jan. 2010.
- BASELGA, A.; ORME, C. D. L. betapart: an R package for the study of beta diversity. **Methods in Ecology and Evolution**, v. 3, n. 5, p. 808–812, 2012.
- BECKER, Carlos Guilherme et al. Habitat split and the global decline of amphibians. **Science**, v. 318, n. 5857, p. 1775-1777, 2007.
- BEGON, M.; TOWNSEND, C. R.; HARPER, J. L. Ecology: from individuals to ecosystems. 4th ed ed. Malden, MA: Blackwell Pub, 2006.
- BORGES-NOJOSA, D. M.; DE CASTRO, D. P.; LIMA, D. C.; BEZERRA, C. H.; MACIEL, A. O.; HARRIS, D. J. Expanding the known range of *Caecilia tentaculata* (Amphibia: Gymnophiona) to relict mountain forests in northeastern Brazil: linking Atlantic forests to the Amazon? **Salamandra**, v. 53, n. 3, p. 429-434. 2017.
- BOURKE, J.; BUSSE, K.; BÖHME, W. Searching for lost frog (*Rhinoderma rufum*): identification of the most promising areas for future surveys and possible

reasons of its enigmatic decline. **North-Western Journal of Zoology**, v. 8, n. 1, p. 99-106. 2012.

- BRASILEIRO, C. A.; OYAMAGUCHI, H. M.; HADDAD, C. F. B. A new island species of *Scinax* (Anura: Hylidae) from Southeastern Brazil. Journal of Herpetology, v. 41, n. 2, p. 271-275. 2007A.
- BRASILEIRO, C. A.; HADDAD, C. F. B.; SAWAYA, R. J.; MARTINS, M. A new threatened species of *Scinax* (Anura: Hylidae) from Queimada Grande Island, southeastern Brazil. **Zootaxa**, v. 1391, p. 47-55. 2007B.
- BREIMAN, L. Random Forests. Machine Learning, v. 45, n. 1, p. 5–32, 2001.
- BREIMAN, BREIMAN, B., & BREIMAN, L. . Classification and Regression Trees. **CRC Press**. 1984
- BREINER, F. T. et al. Overcoming limitations of modelling rare species by using ensembles of small models. **Methods in Ecology and Evolution**, v. 6, n. 10, p. 1210–1218, 2015.
- BROENNIMANN, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data: Measuring niche overlap. Global Ecology and Biogeography, v. 21, n. 4, p. 481–497, abr. 2012.
- BROWN, J. L.; TWOMEY, E.; PEPPER, M.; RODRIGUEZ, M. S. Revision of the Ranitomeya fantastica species complex with description of two new species from Central Peru (Anura: Dendrobatidae). **Zootaxa**, v. 1823, p. 1-24. 2008.
- CALABRESE, J. M. et al. Stacking species distribution models and adjusting bias by linking them to macroecological models: Stacking species distribution models. **Global Ecology and Biogeography**, v. 23, n. 1, p. 99–112, jan. 2014.
- CALIXTO-PÉREZ, E. et al. Integrating expert knowledge and ecological niche models to estimate Mexican primates' distribution. **Primates**, v. 59, n. 5, p. 451–467, set. 2018.
- CARAMASCHI, U.; ORRICO, V. G. D.; FAIVOVICH, J.; DIAS, I. R.; SOLÉ, M. A new species of *Allophryne* (Anura: Allophrynidae) from the Atlantic Rain Forest Biome of Eastern Brazil. **Herpetologica**, v. 69, n. 4, p. 480-491. 2013.
- CARNAVAL, A. C. et al. Prediction of phylogeographic endemism in an environmentally complex biome. **Proceedings of the Royal Society B: Biological Sciences**, v. 281, n. 1792, p. 20141461, 7 out. 2014.
- CASTRO, D. P.; MÂNGIA, S.; MAGALHÃES, F. M.. RÖHR, D. L.; CAMURUGI, F.; SILVEIRA-FILHO, R. R.; DA SILVA, M. M. X.; ANDRADE-OLIVEIRA, J. A.; SOUSA, T. A.; FRANÇA, F. G. R.; HARRIS, D. J.; GARDA, A. A.; BORGES-NOJOSA, D. M. Herpetofauna of protected areas in the Caatinga VI: the Ubajara National Park, Ceará, Brazil. Herpetology Notes, v. 12, p. 727-742. 2019.

- CASTROVIEJO-FISHER, S.; PÉREZ-PENA, P. E.; PADIAL, J. M.; GUAYASAMIN, J. M. A second species of the family Allophrynidae (Amphibia: Anura). **American Museum Novitates**, v. 3739, p. 1-17. 2012.
- CHAMBERLAIN, S.; RAM, K.; HART, Ted. spocc: Interface to species occurrence data sources. R package version 0.5. 0. See http://CRAN. R-project. org/package= spocc, 2016.
- CHASE, J. M.; LEIBOLD, M. A. Ecological niches: linking classical and contemporary approaches. Chicago: University of Chicago Press, 2003.
- COLWELL, R. K.; RANGEL, T. F. Hutchinson's duality: The once and future niche. **Proceedings of the National Academy of Sciences**, v. 106, n. Supplement_2, p. 19651–19658, 17 nov. 2009.
- DA ROCHA BRAGA, R. et al. Leptodactylus macrosternum (Anura: Leptodactylidae) as a bioindicator of potentially toxic chemical elements in irrigated perimeters in northeastern Brazil. **Environmental Chemistry and Ecotoxicology**, v. 4, p. 124–131, 2022.
- DALMOLIN, D. A.; PÉRICO, E.; MACHADO, I. F.; RENNER, S. Anurans from the Taquari River Valley, Rio Grande do Sul State, Southern Brazil. **Herpetology Notes**, v. 7, p. 693-701. 2014.
- DE FREITAS, M. A. et al. Herpetofauna of Serra do Timbó, an Atlantic Forest remnant in Bahia State, northeastern Brazil. Herpetology Notes, volume 12: 245-260, 2019.
- DINIZ-FILHO, J. A. F. et al. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. **Ecography**, v. 32, n. 6, p. 897–906, 2009.
- DORMANN, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. **Ecography**, v. 36, n. 1, p. 27–46, jan. 2013.
- DUELLMAN, W. E. Distribution patterns of amphibians in South America. In: DUELLMAN, W. E. (Ed.) Patterns of Distribution of Amphibians. A global perspective. The John Hopkins University Press, Baltimore and London, p. 255-328. 1999.

DUELLMAN, W. E.; TRUEB, L. Biology of Amphibians. [s.l.] JHU Press, 1994.

- ELITH, J. et al. Novel methods improve prediction of species' distributions from occurrence data. **Ecography**, v. 29, n. 2, p. 129–151, abr. 2006.
- ELITH, J.; LEATHWICK, J. R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. **Annual Review of Ecology**, **Evolution, and Systematics**, v. 40, n. 1, p. 677–697, 1 dez. 2009.
- FICETOLA, G. F. Is interest toward the environment really declining? The complexity of analysing trends using internet search data. **Biodiversity and Conservation**, v. 22, n. 12, p. 2983–2988, nov. 2013.

- FISER, C.; ROBINSON, C. T.; MALARD, F. Cryptic species as a window into the paradigm shift of the species concept. **Molecular Ecology**, v. 27, n. 3, p. 613–635, fev. 2018.
- FLETCHER, R.; FORTIN, M. J. Spatial Ecology and Conservation Modelling. In: Applications With R, Ecological Informatics. **Springer International Publishing** Switzerland, 2018.
- FUNK, W. C.; CAMINER, M.; RON, S. R. High levels of cryptic species diversity uncovered in Amazonian frogs. Proceedings of the Royal Society B: Biological Sciences, v. 279, n. 1734, p. 1806–1814, 2012.
- GARDNER, Toby A. et al. The value of primary, secondary, and plantation forests for a neotropical herpetofauna. **Conservation biology**, v. 21, n. 3, p. 775-787, 2007.
- GASTON, K. J.; FULLER, R. A. The sizes of species' geographic ranges. **Journal of Applied Ecology**, v. 46, n. 1, p. 1–9, 2009.
- GHIRARDI, R.; LEVY, M. G.; LÓPEZ, J. A.; CORBALÁN, V.; STECIOW, M. M.; PEROTTI, M. G. 2014. Endangered amphibians infected with the chytrid fungus *Batrachochytrium dendrobatidis* in Austral temperate wetlands from Argentina. Herpetological Journal, v. 24, p. 129-133.
- GIOVANELLI, J. G. R. et al. Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods. **Ecological Modelling**, v. 221, n. 2, p. 215–224, 24 jan. 2010.
- GRINNELL, J. The Niche-Relationships of the California Thrasher. **The Auk**, v. 34, n. 4, p. 427–433, out. 1917.
- GUISAN, A.; THUILLER, W.; ZIMMERMANN, N. E. Habitat Suitability and Distribution Models: With Applications in R. Cambridge: Cambridge University Press, 2017.
- HARFOOT, M. B. J. et al. Using the IUCN Red List to map threats to terrestrial vertebrates at global scale. **Nature Ecology & Evolution**, v. 5, n. 11, p. 1510–1519, nov. 2021.
- HAWKINS, B. A.; RUEDA, M.; RODRÍGUEZ, M. Á. What Do Range Maps and Surveys Tell Us About Diversity Patterns? Folia Geobotanica, v. 43, n. 3, p. 345–355, set. 2008.
- HERKT, K. M. B.; SKIDMORE, A. K.; FAHR, J. Macroecological conclusions based on IUCN expert maps: A call for caution. Global Ecology and Biogeography, v. 26, n. 8, p. 930–941, ago. 2017.

HIJMANS, R. J. Introduction to the 'raster' package (version 2.3-12). p. 27, 2014.

- HIRZEL, A. H.; HAUSSER, J.; CHESSEL, D.; PERRIN, N. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? **Ecology**, v. 83, p. 2027–2036, 2002.
- HORTAL, J. et al. Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annual Review of Ecology, Evolution, and Systematics, v. 46, n. 1, p. 523–549, 4 dez. 2015.
- HURLBERT, A. H.; JETZ, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. **Proceedings of the National Academy of Sciences**, v. 104, n. 33, p. 13384–13389, 14 ago. 2007.
- HURLBERT, A. H.; WHITE, E. P. Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications: Range map- vs. survey-based species richness. **Ecology Letters**, v. 8, n. 3, p. 319–327, 25 fev. 2005.
- IUCN 2022. The IUCN Red List of Threatened Species. Version 2022-1. https://www.IUCNredlist.org. 2022
- IUCN Red List Categories and Criteria: Versão 3.1. IUCN Species Survival Commission. IUCN, Gland, Switzerland and Cambridge, UK. p. 12 2001.
- IZECKSOHN, E. Três novas espécies de *Dendrophryniscus* Jiménez de la Espada das regiões sudeste e sul do Brasil (Amphibia, Anura, Bufonidae). Revista brasileira de Zoologia, v. 10, n. 3, p. 473-488. 1993
- JÚNIOR, P. D. M.; NÓBREGA, C. C. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLOS ONE, v. 13, n. 9, p. e0202403, 11 set. 2018.
- KARGER, D. N. et al. Climatologies at high resolution for the earth's land surface areas. **Scientific Data**, v. 4, n. 1, p. 170122, 19 dez. 2017.
- KEARNEY, M.; SHINE, R.; PORTER, W. P. The potential for behavioral thermoregulation to buffer "cold-blooded" animals against climate warming. **Proceedings of the National Academy of Sciences**, v. 106, n. 10, p. 3835–3840, 10 mar. 2009.
- KOK, P. J. R. A new species of *Oreophrynella* (Anura:Bufonidae) from the Pantepui region of Guyana, with notes on *O. macconnelli* Boulenger, 1900. **Zootaxa**, v. 2071, p. 35-49. 2009.
- LERTZMAN-LEPOFSKY, G. F. et al. Water loss and temperature interact to compound amphibian vulnerability to climate change. **Global Change Biology**, v. 26, n. 9, p. 4868–4879, set. 2020.
- LION, M. B. et al. Global patterns of terrestriality in amphibian reproduction. **Global Ecology and Biogeography**, v. 28, n. 6, p. 744–756, jun. 2019.
- LIMA, A. P.; FERRÃO, M.; LACERDA DA SILVA, D. Not as widespread as thought: Integrative taxonomy reveals cryptic diversity in the Amazonian nurse frog *Allobates tinae* Melo-Sampaio, Oliveira and Prates, 2018 and description of a

new species. Journal of Zoological Systematics and Evolutionary Research, v. 58, n. 4, p. 1173–1194, 2020.

- LIU, C.; NEWELL, G.; WHITE, M. On the selection of thresholds for predicting species occurrence with presence-only data. **Ecology and Evolution**, v. 6, n. 1, p. 337–348, 2016.
- LIU, C.; WHITE, M.; NEWELL, G. Selecting thresholds for the prediction of species occurrence with presence-only data. **Journal of Biogeography**, v. 40, n. 4, p. 778–789, 2013.
- LOEBMANN, D.; HADDAD, C. F. B. Amphibians and reptiles from a highly diverse area of the Caatinga domain: composition and conservation implications. **Biota Neotropica**, v. 10, n. 3, p. 227–256, set. 2010.
- LOMBA, A. et al. Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. **Biological Conservation**, v. 143, n. 11, p. 2647–2657, nov. 2010.
- LONGMORE, R. Atlas of elapid snakes of australia. 2nd. ed. Austrália: AGPS Canberra, 1989. v. 7
- LÖWENBERG-NETO, P. Neotropical region: a shapefile of Morrone's (2014) biogeographical regionalisation. **Zootaxa**, v. 3802, n. 2, p. 300–300, 2014.
- MACE, G. et al. The Development of New Criteria for Listing Species on the IUCN Red List. p. 7, 1992.
- MACIEL, D. B.; NUNES, I. A new species of four-eyed frog genus *Pleurodema* Tschudi, 1838 (Anura: Leiuperidae) from the rock meadows of Espinhaço range, Brazil. **Zootaxa**, v. 2640, p. 53-61. 2010.
- MAINALI, K. et al. Matching expert range maps with species distribution model predictions. **Conservation Biology**, v. 34, n. 5, p. 1292–1304, out. 2020.
- MANN, R. M. et al. Amphibians and agricultural chemicals: Review of the risks in a complex environment. **Environmental Pollution**, v. 157, n. 11, p. 2903–2927, nov. 2009.
- MCCULLAGH, PETER; NELDER, JOHN A. Generalized linear models. **Routledge**, 2019.
- MENDONÇA, B. A. F.; FERNANDES-FILHO, E. I. F.; SCHAEFER, C. E. G. R.; SIMAS, F. N. B.; DE PAULA, M. D. Os solos das campinaranas na Amazônia brasileira: Ecossistemas arenícolas oligotróficos. Ciência Florestal, v. 25, n. 4, p. 827-839. 2015.
- MERCADAL, I. T. Sobre la validez de *Ceratophrys testudo* Andersson, 1945 (Amphibia, Ceratophryidae). **Amphibia-Reptilia**, v. 9, p. 1-6. 1998.
- MEROW, C. et al. Operationalizing expert knowledge in species' range estimates using diverse data types. **Frontiers of Biogeography**, v. 14, n. 2, 4 jun. 2022.

- MORA, M.; BARDI, F.; LABRA, A. State of knowledge of the Chilean giant frog (*Calyptocephalella gayi*). **Gayana**, v. 85, n. 1, p. 22-34. 2021.
- MORRONE, J. J. Biogeographical regionalisation of the Neotropical region. **Zootaxa**, v. 3782, n. 1, p. 1, 25 mar. 2014.
- MOTA-VARGAS, C. et al. Una breve introducción a los modelos de nicho ecológico. p. 26, 2019.
- MOURA, M. R.; JETZ, W. Shortfalls and opportunities in terrestrial vertebrate species discovery. **Nature Ecology & Evolution**, v. 5, n. 5, p. 631–639, maio 2021.
- NAIMI, B. et al. Where is positional uncertainty a problem for species distribution modelling? **Ecography**, v. 37, n. 2, p. 191–203, 2014.
- NAIMI, B.; ARAÚJO, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. **Ecography**, v. 39, n. 4, p. 368–375, abr. 2016.
- OLIVEIRA, U. et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. **Diversity and Distributions**, v. 22, n. 12, p. 1232–1244, dez. 2016.
- PADIAL, J. M.; DE LA RIVA, I. Integrative taxonomy reveals cryptic Amazonian species of *Pristimantis* (Anura: Strabomantidae). **Zoological Journal of the** Linnean Society, v. 155, n. 1, p. 97–122, jan. 2009.
- PEARSON, R. G. et al. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, v. 34, n. 1, p. 102–117, 2007.
- PEBESMA, E. J. Simple features for R: standardized support for spatial vector data. **R J.**, v. 10, n. 1, p. 439, 2018.
- PETERSON, A. T.; SOBERÓN, J.; ANDERSON, R. P. (EDS.). Ecological niches and geographic distributions. Princeton, N.J: Princeton University Press, 2011.
- PHILLIPS, S. J. et al. Opening the black box: an open-source release of Maxent. **Ecography**, v. 40, n. 7, p. 887–893, 2017.
- PHILLIPS, S. J.; ANDERSON, R. P.; SCHAPIRE, R. E. Maximum entropy modeling of species geographic distributions. **Ecological Modelling**, v. 190, n. 3–4, p. 231–259, jan. 2006.
- PINHEIRO, P. D. P. et al. A new cryptic species of the *Aplastodiscus albosignatus* group (Anura: Hylidae). **Salamandra**, v. 57, p. 27-43. 2021.
- QUEZADA, C. L. C.; AYERZA, M. S.; JARA-ARANCIO, P.; LOBOS, G.; SOTO, E.; MÉNDEZ, M. A. Amphibia, Anura, Bufonidae, *Rhinella atacamensis*: Altitudinal distribution extension, new records and geographic distribution map. **Chek List**, v. 4, n. 4, p. 478-484. 2008.

- R CORE TEAM. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2020. Disponível em: https://www.R-project.org/>
- RAMESH, V. et al. IUCN greatly underestimates threat levels of endemic birds in the Western Ghats. **Biological Conservation**, v. 210, p. 205–221, jun. 2017.
- RAMOS, E. K. S.; MAGALHÃES, R. F.; SARI, E. H. R.; ROSA, A. H. B.; GARCIA, P. C. A.; SANTOS, F. R. Population genetics and distribution data reveal conservation concerns to the sky island endemic *Pithecopus megacephalus* (Anura, Phyllomedusidae). **Conservation Genetics**, v. 19, p. 99-110. 2018.
- RANGEL, T. F. et al. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. **Science**, v. 361, n. 6399, p. eaar5452, 20 jul. 2018.
- ROYLE, J. A. et al. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. **Methods in Ecology and Evolution**, v. 3, n. 3, p. 545–554, 2012.
- SCHOENER, T. W. Nonsynchronous Spatial Overlap of Lizards in Patchy Habitats. **Ecology**, v. 51, n. 3, p. 408–418, 1970.
- SEGALLA, M. V.; CARAMASCHI, U.; CRUZ, C. A. G.; GARCIA, P. C. A.; GRANT, T.; HADDAD, C. F. B.; SANTANA, D. J.; TOLEDO, L. F.; LANGONE, J. A. Brazilian Amphibians: list of species. Herpetologia Brasileira, v. 8, n. 1, p. 65-96. 2019.
- SEGALLA, M. V.; BERNECK, B.; CANEDO, C.; CARAMASCHI, U.; CRUZ, C. A. G.; GARCIA, P. C. A.; GRANT, T.; HADDAD, C. F. B.; LOURENÇO, A. C. C.; MÂNGIA, S.; MOTT, T.; NASCIMENTO, L. B.; TOLEDO, L. F.; WERNECK, F. P.; LANGONE, J. A. List of Brazilian Amphibians. Herpetologia Brasileira, v. 10, n. 1, p. 121-216. 2021.
- SOBERON, J.; PETERSON, A. T. Interpretation of Models of Fundamental Ecological Niches and Species' Distributional Areas. **Biodiversity Informatics**, v. 2, n. 0, 2005.
- STOCKWELL, D. R. B.; PETERSON, A. T. Effects of sample size on accuracy of species distribution models. Ecological Modelling, v. 148, n. 1, p. 1–13, fev. 2002.
- ÚBEDA, C.; GRIGERA, D. El grado de protección de los anfibios patagónicos de Argentina. **Ecologia Austral**, v. 17, p. 269-279. 2007.
- VAPNIK, V. N. The nature of statistical learning theory (Second Edition). **Springer** science & business media, 2010.
- VASCONCELOS, T. S. et al. **Biogeographic Patterns of South American Anurans**. Cham: Springer International Publishing, 2019.

- VASCONCELOS, T. S.; PRADO, V. H. M. Climate change and opposing spatial conservation priorities for anuran protection in the Brazilian hotspots. **Journal for Nature Conservation**, v. 49, p. 118–124, jun. 2019.
- VASCONCELOS, T. S.; RODRÍGUEZ, M. Á.; HAWKINS, B. A. Species distribution modelling as a macroecological tool: a case study using New World amphibians. **Ecography**, v. 35, n. 6, p. 539–548, jun. 2012.
- VITAL, M. V. C. et al. Geographic distribution of Africanized honeybees (*Apis mellifera*) reflects niche characteristics of ancestral African subspecies. Natureza & Conservação, v. 10, n. 2, p. 164–190, 2012.
- VITT, L. J.; CALDWELL, J. P. Herpetology. An Introductory Biology of Amphibians and Reptiles. Fourth Edition. Elsevier, Amsterdam. 2014.
- WERNECK, F. P. The diversification of eastern South American open vegetation biomes: Historical biogeography and perspectives. Quaternary Science Reviews, v. 30, p. 1630-1648. 2011.
- WICKHAM, H. Package tidyverse: easily install and load the 'Tidyverse'. R package version 1.2.1. 2018. Vienna, Austria: R Foundation for Statistical Computing. Disponível em: https://CRAN.R-project.org/package=tidyverse

APÊNDICES

APÊNDICE A - Lista final de espécies

	Família	Espécie
1	Microhylidae	Adelastes hylonomos
2	Eleutherodactylidae	Adelophryne adiastola
3	Eleutherodactylidae	Adelophryne baturitensis
4	Eleutherodactylidae	Adelophryne gutturosa
5	Eleutherodactylidae	Adelophryne maranguapensis
6	Eleutherodactylidae	Adelophryne pachydactyla
7	Eleutherodactylidae	Adelophryne patamona
8	Dendrobatidae	Adelphobates castaneoticus
9	Dendrobatidae	Adelphobates galactonotus
10	Dendrobatidae	Adelphobates quinquevittatus
11	Leptodactylidae	Adenomera ajurauna
12	Leptodactylidae	Adenomera andreae
13	Leptodactylidae	Adenomera araucaria
14	Leptodactylidae	Adenomera bokermanni
15	Leptodactylidae	Adenomera diptyx
16	Leptodactylidae	Adenomera heyeri
17	Leptodactylidae	Adenomera hylaedactyla
18	Leptodactylidae	Adenomera lutzi
19	Leptodactylidae	Adenomera marmorata
20	Leptodactylidae	Adenomera martinezi
21	Leptodactylidae	Adenomera nana
22	Leptodactylidae	Adenomera thomei
23	Phyllomedusidae	Agalychnis aspera
24	Phyllomedusidae	Agalychnis buckleyi
25	Phyllomedusidae	Agalychnis danieli
26	Phyllomedusidae	Agalychnis granulosa
27	Phyllomedusidae	Agalychnis hulli
28	Phyllomedusidae	Agalychnis medinae
29	Phyllomedusidae	Agalychnis psilopygion

30	Phyllomedusidae	Agalychnis terranova
31	Aromobatidae	Allobates alessandroi
32	Aromobatidae	Allobates amissibilis
33	Aromobatidae	Allobates bromelicola
34	Aromobatidae	Allobates brunneus
35	Aromobatidae	Allobates caeruleodactylus
36	Aromobatidae	Allobates cepedai
37	Aromobatidae	Allobates conspicuus
38	Aromobatidae	Allobates crombiei
39	Aromobatidae	Allobates femoralis
40	Aromobatidae	Allobates fratisenescus
41	Aromobatidae	Allobates fuscellus
42	Aromobatidae	Allobates gasconi
43	Aromobatidae	Allobates granti
44	Aromobatidae	Allobates ignotus
45	Aromobatidae	Allobates insperatus
46	Aromobatidae	Allobates juanii
47	Aromobatidae	Allobates kingsburyi
48	Aromobatidae	Allobates marchesianus
49	Aromobatidae	Allobates masniger
50	Aromobatidae	Allobates melanolaemus
51	Aromobatidae	Allobates myersi
52	Aromobatidae	Allobates nidicola
53	Aromobatidae	Allobates niputidea
54	Aromobatidae	Allobates olfersioides
55	Aromobatidae	Allobates ornatus
56	Aromobatidae	Allobates paleovarzensis
57	Aromobatidae	Allobates pittieri
58	Aromobatidae	Allobates ranoides
59	Aromobatidae	Allobates spumaponens
60	Aromobatidae	Allobates subfolionidificans
61	Aromobatidae	Allobates sumtuosus
62	Aromobatidae	Allobates trilineatus

63	Aromobatidae	Allobates vanzolinius
64	Aromobatidae	Allobates wayuu
65	Aromobatidae	Allobates zaparo
66	Allophrynidae	Allophryne ruthveni
67	Alsodidae	Alsodes australis
68	Alsodidae	Alsodes barrioi
69	Alsodidae	Alsodes cantillanensis
70	Alsodidae	Alsodes coppingeri
71	Alsodidae	Alsodes gargola
72	Alsodidae	Alsodes hugoi
73	Alsodidae	Alsodes igneus
74	Alsodidae	Alsodes montanus
75	Alsodidae	Alsodes neuquensis
76	Alsodidae	Alsodes nodosus
77	Alsodidae	Alsodes norae
78	Alsodidae	Alsodes pehuenche
79	Alsodidae	Alsodes tumultuosus
80	Alsodidae	Alsodes valdiviensis
81	Alsodidae	Alsodes vanzolinii
82	Alsodidae	Alsodes verrucosus
83	Alsodidae	Alsodes vittatus
84	Bufonidae	Amazophrynella bokermanni
85	Bufonidae	Amazophrynella minuta
86	Dendrobatidae	Ameerega bassleri
87	Dendrobatidae	Ameerega berohoka
88	Dendrobatidae	Ameerega bilinguis
89	Dendrobatidae	Ameerega boehmei
90	Dendrobatidae	Ameerega braccata
91	Dendrobatidae	Ameerega cainarachi
92	Dendrobatidae	Ameerega flavopicta
93	Dendrobatidae	Ameerega hahneli
94	Dendrobatidae	Ameerega ingeri
95	Dendrobatidae	Ameerega macero

96	Dendrobatidae	Ameerega parvula
97	Dendrobatidae	Ameerega pepperi
98	Dendrobatidae	Ameerega petersi
99	Dendrobatidae	Ameerega picta
100	Dendrobatidae	Ameerega planipaleae
101	Dendrobatidae	Ameerega pongoensis
102	Dendrobatidae	Ameerega pulchripecta
103	Dendrobatidae	Ameerega rubriventris
104	Dendrobatidae	Ameerega shihuemoy
105	Dendrobatidae	Ameerega silverstonei
106	Dendrobatidae	Ameerega simulans
107	Dendrobatidae	Ameerega trivittata
108	Dendrobatidae	Andinobates abditus
109	Dendrobatidae	Andinobates bombetes
110	Dendrobatidae	Andinobates daleswansoni
111	Dendrobatidae	Andinobates dorisswansonae
112	Dendrobatidae	Andinobates fulguritus
113	Dendrobatidae	Andinobates opisthomelas
114	Dendrobatidae	Andinobates victimatus
115	Dendrobatidae	Andinobates viridis
116	Dendrobatidae	Andinobates virolinensis
117	Aromobatidae	Anomaloglossus baeobatrachus
118	Aromobatidae	Anomaloglossus beebei
119	Aromobatidae	Anomaloglossus blanci
120	Aromobatidae	Anomaloglossus degranvillei
121	Aromobatidae	Anomaloglossus dewynteri
122	Aromobatidae	Anomaloglossus kaiei
123	Aromobatidae	Anomaloglossus leopardus
124	Aromobatidae	Anomaloglossus megacephalus
125	Aromobatidae	Anomaloglossus praderioi
126	Aromobatidae	Anomaloglossus roraima
127	Aromobatidae	Anomaloglossus rufulus
128	Aromobatidae	Anomaloglossus stepheni

129	Aromobatidae	Anomaloglossus surinamensis
130	Hylidae	Aparasphenodon bokermanni
131	Hylidae	Aparasphenodon brunoi
132	Hylidae	Aplastodiscus albofrenatus
133	Hylidae	Aplastodiscus albosignatus
134	Hylidae	Aplastodiscus arildae
135	Hylidae	Aplastodiscus callipygius
136	Hylidae	Aplastodiscus cavicola
137	Hylidae	Aplastodiscus cochranae
138	Hylidae	Aplastodiscus ehrhardti
139	Hylidae	Aplastodiscus eugenioi
140	Hylidae	Aplastodiscus flumineus
141	Hylidae	Aplastodiscus ibirapitanga
142	Hylidae	Aplastodiscus leucopygius
143	Hylidae	Aplastodiscus musicus
144	Hylidae	Aplastodiscus perviridis
145	Hylidae	Aplastodiscus sibilatus
146	Hylidae	Aplastodiscus weygoldti
147	Microhylidae	Arcovomer passarellii
148	Hylidae	Argenteohyla siemersi
149	Aromobatidae	Aromobates alboguttatus
150	Aromobatidae	Aromobates leopardalis
151	Aromobatidae	Aromobates molinarii
152	Aromobatidae	Aromobates ornatissimus
153	Aromobatidae	Aromobates orostoma
154	Aromobatidae	Aromobates saltuensis
155	Batrachylidae	Atelognathus ceii
156	Batrachylidae	Atelognathus nitoi
157	Batrachylidae	Atelognathus patagonicus
158	Batrachylidae	Atelognathus praebasalticus
159	Batrachylidae	Atelognathus reverberii
160	Batrachylidae	Atelognathus salai
161	Batrachylidae	Atelognathus solitarius

162	Bufonidae	Atelopus angelito
163	Bufonidae	Atelopus arsyecue
164	Bufonidae	Atelopus arthuri
165	Bufonidae	Atelopus balios
166	Bufonidae	Atelopus bomolochos
167	Bufonidae	Atelopus carauta
168	Bufonidae	Atelopus carbonerensis
169	Bufonidae	Atelopus carrikeri
170	Bufonidae	Atelopus chocoensis
171	Bufonidae	Atelopus coynei
172	Bufonidae	Atelopus cruciger
173	Bufonidae	Atelopus dimorphus
174	Bufonidae	Atelopus ebenoides
175	Bufonidae	Atelopus elegans
176	Bufonidae	Atelopus epikeisthos
177	Bufonidae	Atelopus eusebianus
178	Bufonidae	Atelopus exiguus
179	Bufonidae	Atelopus farci
180	Bufonidae	Atelopus flavescens
181	Bufonidae	Atelopus franciscus
182	Bufonidae	Atelopus guanujo
183	Bufonidae	Atelopus halihelos
184	Bufonidae	Atelopus ignescens
185	Bufonidae	Atelopus laetissimus
186	Bufonidae	Atelopus longibrachius
187	Bufonidae	Atelopus longirostris
188	Bufonidae	Atelopus lozanoi
189	Bufonidae	Atelopus lynchi
190	Bufonidae	Atelopus mandingues
191	Bufonidae	Atelopus mindoensis
192	Bufonidae	Atelopus minutulus
193	Bufonidae	Atelopus mittermeieri
194	Bufonidae	Atelopus monohernandezii

195	Bufonidae	Atelopus muisca
196	Bufonidae	Atelopus nahumae
197	Bufonidae	Atelopus nanay
198	Bufonidae	Atelopus nepiozomus
199	Bufonidae	Atelopus nicefori
200	Bufonidae	Atelopus nocturnus
201	Bufonidae	Atelopus onorei
202	Bufonidae	Atelopus oxyrhynchus
203	Bufonidae	Atelopus pachydermus
204	Bufonidae	Atelopus palmatus
205	Bufonidae	Atelopus pastuso
206	Bufonidae	Atelopus patazensis
207	Bufonidae	Atelopus peruensis
208	Bufonidae	Atelopus petersi
209	Bufonidae	Atelopus petriruizi
210	Bufonidae	Atelopus pictiventris
211	Bufonidae	Atelopus planispina
212	Bufonidae	Atelopus podocarpus
213	Bufonidae	Atelopus pulcher
214	Bufonidae	Atelopus quimbaya
215	Bufonidae	Atelopus sanjosei
216	Bufonidae	Atelopus seminiferus
217	Bufonidae	Atelopus sernai
218	Bufonidae	Atelopus simulatus
219	Bufonidae	Atelopus sonsonensis
220	Bufonidae	Atelopus sorianoi
221	Bufonidae	Atelopus spumarius
222	Bufonidae	Atelopus spurrelli
223	Bufonidae	Atelopus subornatus
224	Bufonidae	Atelopus tricolor
225	Bufonidae	Atelopus walkeri
226	Craugastoridae	Atopophrynus syntomopus
227	Craugastoridae	Barycholos pulcher

228	Craugastoridae	Barycholos ternetzi
229	Batrachylidae	Batrachyla antartandica
230	Batrachylidae	Batrachyla leptopus
231	Batrachylidae	Batrachyla nibaldoi
232	Batrachylidae	Batrachyla taeniata
233	Hylidae	Boana albomarginata
234	Hylidae	Boana albonigra
235	Hylidae	Boana albopunctata
236	Hylidae	Boana alemani
237	Hylidae	Boana atlantica
238	Hylidae	Boana balzani
239	Hylidae	Boana bischoffi
240	Hylidae	Boana boans
241	Hylidae	Boana buriti
242	Hylidae	Boana caingua
243	Hylidae	Boana calcarata
244	Hylidae	Boana callipleura
245	Hylidae	Boana cinerascens
246	Hylidae	Boana cipoensis
247	Hylidae	Boana cordobae
248	Hylidae	Boana crepitans
249	Hylidae	Boana curupi
250	Hylidae	Boana dentei
251	Hylidae	Boana ericae
252	Hylidae	Boana exastis
253	Hylidae	Boana faber
254	Hylidae	Boana fasciata
255	Hylidae	Boana freicanecae
256	Hylidae	Boana geographica
257	Hylidae	Boana gladiator
258	Hylidae	Boana goiana
259	Hylidae	Boana guentheri
260	Hylidae	Boana hobbsi

261	Hylidae	Boana hutchinsi
262	Hylidae	Boana joaquini
263	Hylidae	Boana lanciformis
264	Hylidae	Boana lemai
265	Hylidae	Boana leptolineata
266	Hylidae	Boana leucocheila
267	Hylidae	Boana lundii
268	Hylidae	Boana marginata
269	Hylidae	Boana melanopleura
270	Hylidae	Boana microderma
271	Hylidae	Boana multifasciata
272	Hylidae	Boana nympha
273	Hylidae	Boana ornatissima
274	Hylidae	Boana palaestes
275	Hylidae	Boana pardalis
276	Hylidae	Boana pellucens
277	Hylidae	Boana picturata
278	Hylidae	Boana polytaenia
279	Hylidae	Boana pombali
280	Hylidae	Boana prasina
281	Hylidae	Boana pugnax
282	Hylidae	Boana pulchella
283	Hylidae	Boana punctata
284	Hylidae	Boana raniceps
285	Hylidae	Boana riojana
286	Hylidae	Boana roraima
287	Hylidae	Boana rubracyla
288	Hylidae	Boana secedens
289	Hylidae	Boana semiguttata
290	Hylidae	Boana semilineata
291	Hylidae	Boana sibleszi
292	Hylidae	Boana stellae
293	Hylidae	Boana stenocephala

294	Hylidae	Boana tetete
295	Hylidae	Boana wavrini
296	Hylidae	Bokermannohyla ahenea
297	Hylidae	Bokermannohyla alvarengai
298	Hylidae	Bokermannohyla astartea
299	Hylidae	Bokermannohyla caramaschii
300	Hylidae	Bokermannohyla carvalhoi
301	Hylidae	Bokermannohyla circumdata
302	Hylidae	Bokermannohyla diamantina
303	Hylidae	Bokermannohyla feioi
304	Hylidae	Bokermannohyla gouveai
305	Hylidae	Bokermannohyla hylax
306	Hylidae	Bokermannohyla ibitiguara
307	Hylidae	Bokermannohyla ibitipoca
308	Hylidae	Bokermannohyla itapoty
309	Hylidae	Bokermannohyla izecksohni
310	Hylidae	Bokermannohyla langei
311	Hylidae	Bokermannohyla lucianae
312	Hylidae	Bokermannohyla luctuosa
313	Hylidae	Bokermannohyla martinsi
314	Hylidae	Bokermannohyla nanuzae
315	Hylidae	Bokermannohyla oxente
316	Hylidae	Bokermannohyla pseudopseudis
317	Hylidae	Bokermannohyla ravida
318	Hylidae	Bokermannohyla sagarana
319	Hylidae	Bokermannohyla saxicola
320	Hylidae	Bokermannohyla sazimai
321	Hylidae	Bokermannohyla vulcaniae
322	Brachycephalidae	Brachycephalus alipioi
323	Brachycephalidae	Brachycephalus brunneus
324	Brachycephalidae	Brachycephalus didactylus
325	Brachycephalidae	Brachycephalus ephippium
326	Brachycephalidae	Brachycephalus ferruginus

327	Brachycephalidae	Brachycephalus hermogenesi
328	Brachycephalidae	Brachycephalus izecksohni
329	Brachycephalidae	Brachycephalus nodoterga
330	Brachycephalidae	Brachycephalus pernix
331	Brachycephalidae	Brachycephalus vertebralis
332	Craugastoridae	Bryophryne bustamantei
333	Craugastoridae	Bryophryne cophites
334	Craugastoridae	Bryophryne gymnotis
335	Craugastoridae	Bryophryne hanssaueri
336	Craugastoridae	Bryophryne nubilosus
337	Craugastoridae	Bryophryne phuyuhampatu
338	Craugastoridae	Bryophryne zonalis
339	Phyllomedusidae	Callimedusa atelopoides
340	Phyllomedusidae	Callimedusa baltea
341	Phyllomedusidae	Callimedusa duellmani
342	Phyllomedusidae	Callimedusa ecuatoriana
343	Phyllomedusidae	Callimedusa perinesos
344	Phyllomedusidae	Callimedusa tomopterna
345	Calyptocephalellidae	Calyptocephalella gayi
346	Centrolenidae	Centrolene acanthidiocephalum
347	Centrolenidae	Centrolene antioquiense
348	Centrolenidae	Centrolene bacatum
349	Centrolenidae	Centrolene ballux
350	Centrolenidae	Centrolene buckleyi
351	Centrolenidae	Centrolene condor
352	Centrolenidae	Centrolene geckoideum
353	Centrolenidae	Centrolene gemmatum
354	Centrolenidae	Centrolene heloderma
355	Centrolenidae	Centrolene hesperium
356	Centrolenidae	Centrolene huilense
357	Centrolenidae	Centrolene hybrida
358	Centrolenidae	Centrolene lema
359	Centrolenidae	Centrolene lemniscatum

360	Centrolenidae	Centrolene lynchi
361	Centrolenidae	Centrolene medemi
362	Centrolenidae	Centrolene muelleri
363	Centrolenidae	Centrolene peristictum
364	Centrolenidae	Centrolene petrophilum
365	Centrolenidae	Centrolene quindianum
366	Centrolenidae	Centrolene robledoi
367	Centrolenidae	Centrolene sabini
368	Centrolenidae	Centrolene savagei
369	Centrolenidae	Centrolene scirtetes
370	Centrolenidae	Centrolene solitaria
371	Ceratophryidae	Ceratophrys aurita
372	Ceratophryidae	Ceratophrys calcarata
373	Ceratophryidae	Ceratophrys cornuta
374	Ceratophryidae	Ceratophrys cranwelli
375	Ceratophryidae	Ceratophrys joazeirensis
376	Ceratophryidae	Ceratophrys ornata
377	Ceratophryidae	Ceratophrys stolzmanni
378	Craugastoridae	Ceuthomantis smaragdinus
379	Ceratophryidae	Chacophrys pierottii
380	Batrachylidae	Chaltenobatrachus grandisonae
381	Microhylidae	Chiasmocleis alagoana
382	Microhylidae	Chiasmocleis albopunctata
383	Microhylidae	Chiasmocleis anatipes
384	Microhylidae	Chiasmocleis antenori
385	Microhylidae	Chiasmocleis atlantica
386	Microhylidae	Chiasmocleis avilapiresae
387	Microhylidae	Chiasmocleis bassleri
388	Microhylidae	Chiasmocleis capixaba
389	Microhylidae	Chiasmocleis carvalhoi
390	Microhylidae	Chiasmocleis centralis
391	Microhylidae	Chiasmocleis gnoma
392	Microhylidae	Chiasmocleis hudsoni

393	Microhylidae	Chiasmocleis jimi
394	Microhylidae	Chiasmocleis leucosticta
395	Microhylidae	Chiasmocleis magnova
396	Microhylidae	Chiasmocleis mantiqueira
397	Microhylidae	Chiasmocleis mehelyi
398	Microhylidae	Chiasmocleis schubarti
399	Microhylidae	Chiasmocleis shudikarensis
400	Microhylidae	Chiasmocleis tridactyla
401	Microhylidae	Chiasmocleis ventrimaculata
402	Centrolenidae	Chimerella mariaelenae
403	Centrolenidae	Cochranella euhystrix
404	Centrolenidae	Cochranella guayasamini
405	Centrolenidae	Cochranella litoralis
406	Centrolenidae	Cochranella mache
407	Centrolenidae	Cochranella megistra
408	Centrolenidae	Cochranella nola
409	Centrolenidae	Cochranella ramirezi
410	Centrolenidae	Cochranella resplendens
411	Centrolenidae	Cochranella xanthocheridia
412	Dendrobatidae	Colostethus agilis
413	Dendrobatidae	Colostethus dysprosium
414	Dendrobatidae	Colostethus imbricolus
415	Dendrobatidae	Colostethus inguinalis
416	Dendrobatidae	Colostethus jacobuspetersi
417	Dendrobatidae	Colostethus mertensi
418	Dendrobatidae	Colostethus poecilonotus
419	Dendrobatidae	Colostethus ruthveni
420	Dendrobatidae	Colostethus thorntoni
421	Dendrobatidae	Colostethus yaguara
422	Hylidae	Corythomantis greeningi
423	Craugastoridae	Craugastor longirostris
424	Craugastoridae	Craugastor metriosistus
425	Craugastoridae	Craugastor raniformis

426	Leptodactylidae	Crossodactylodes bokermanni
427	Leptodactylidae	Crossodactylodes izecksohni
428	Hylodidae	Crossodactylus aeneus
429	Hylodidae	Crossodactylus bokermanni
430	Hylodidae	Crossodactylus caramaschii
431	Hylodidae	Crossodactylus cyclospinus
432	Hylodidae	Crossodactylus dantei
433	Hylodidae	Crossodactylus dispar
434	Hylodidae	Crossodactylus gaudichaudii
435	Hylodidae	Crossodactylus grandis
436	Hylodidae	Crossodactylus schmidti
437	Hylodidae	Crossodactylus trachystomus
438	Phyllomedusidae	Cruziohyla craspedopus
439	Hemiphractidae	Cryptobatrachus boulengeri
440	Hemiphractidae	Cryptobatrachus fuhrmanni
441	Hemiphractidae	Cryptobatrachus pedroruizi
442	Hemiphractidae	Cryptobatrachus remotus
443	Hemiphractidae	Cryptobatrachus ruthveni
444	Microhylidae	Ctenophryne aequatorialis
445	Microhylidae	Ctenophryne aterrima
446	Microhylidae	Ctenophryne geayi
447	Cycloramphidae	Cycloramphus acangatan
448	Cycloramphidae	Cycloramphus asper
449	Cycloramphidae	Cycloramphus bandeirensis
450	Cycloramphidae	Cycloramphus bolitoglossus
451	Cycloramphidae	Cycloramphus boraceiensis
452	Cycloramphidae	Cycloramphus brasiliensis
453	Cycloramphidae	Cycloramphus carvalhoi
454	Cycloramphidae	Cycloramphus cedrensis
455	Cycloramphidae	Cycloramphus dubius
456	Cycloramphidae	Cycloramphus eleutherodactylus
457	Cycloramphidae	Cycloramphus faustoi
458	Cycloramphidae	Cycloramphus fuliginosus

459	Cycloramphidae	Cycloramphus granulosus
460	Cycloramphidae	Cycloramphus izecksohni
461	Cycloramphidae	Cycloramphus juimirim
462	Cycloramphidae	Cycloramphus lutzorum
463	Cycloramphidae	Cycloramphus mirandaribeiroi
464	Cycloramphidae	Cycloramphus rhyakonastes
465	Cycloramphidae	Cycloramphus semipalmatus
466	Cycloramphidae	Cycloramphus stejnegeri
467	Cycloramphidae	Cycloramphus valae
468	Microhylidae	Dasypops schirchi
469	Dendrobatidae	Dendrobates leucomelas
470	Dendrobatidae	Dendrobates tinctorius
471	Dendrobatidae	Dendrobates truncatus
472	Bufonidae	Dendrophryniscus berthalutzae
473	Bufonidae	Dendrophryniscus brevipollicatus
474	Bufonidae	Dendrophryniscus carvalhoi
475	Bufonidae	Dendrophryniscus krausae
476	Bufonidae	Dendrophryniscus leucomystax
477	Bufonidae	Dendrophryniscus proboscideus
478	Hylidae	Dendropsophus acreanus
479	Hylidae	Dendropsophus allenorum
480	Hylidae	Dendropsophus anataliasiasi
481	Hylidae	Dendropsophus anceps
482	Hylidae	Dendropsophus aperomeus
483	Hylidae	Dendropsophus berthalutzae
484	Hylidae	Dendropsophus bifurcus
485	Hylidae	Dendropsophus bipunctatus
486	Hylidae	Dendropsophus bogerti
487	Hylidae	Dendropsophus bokermanni
488	Hylidae	Dendropsophus branneri
489	Hylidae	Dendropsophus brevifrons
490	Hylidae	Dendropsophus carnifex
491	Hylidae	Dendropsophus cerradensis

492	Hylidae	Dendropsophus columbianus
493	Hylidae	Dendropsophus cruzi
494	Hylidae	Dendropsophus decipiens
495	Hylidae	Dendropsophus delarivai
496	Hylidae	Dendropsophus elegans
497	Hylidae	Dendropsophus elianeae
498	Hylidae	Dendropsophus frosti
499	Hylidae	Dendropsophus garagoensis
500	Hylidae	Dendropsophus gaucheri
501	Hylidae	Dendropsophus giesleri
502	Hylidae	Dendropsophus gryllatus
503	Hylidae	Dendropsophus haddadi
504	Hylidae	Dendropsophus haraldschultzi
505	Hylidae	Dendropsophus jimi
506	Hylidae	Dendropsophus joannae
507	Hylidae	Dendropsophus juliani
508	Hylidae	Dendropsophus koechlini
509	Hylidae	Dendropsophus leali
510	Hylidae	Dendropsophus leucophyllatus
511	Hylidae	Dendropsophus luddeckei
512	Hylidae	Dendropsophus luteoocellatus
513	Hylidae	Dendropsophus manonegra
514	Hylidae	Dendropsophus marmoratus
515	Hylidae	Dendropsophus mathiassoni
516	Hylidae	Dendropsophus melanargyreus
517	Hylidae	Dendropsophus meridensis
518	Hylidae	Dendropsophus meridianus
519	Hylidae	Dendropsophus microcephalus
520	Hylidae	Dendropsophus microps
521	Hylidae	Dendropsophus minusculus
522	Hylidae	Dendropsophus minutus
523	Hylidae	Dendropsophus miyatai
524	Hylidae	Dendropsophus molitor

525	Hylidae	Dendropsophus nahdereri
526	Hylidae	Dendropsophus nanus
527	Hylidae	Dendropsophus norandinus
528	Hylidae	Dendropsophus novaisi
529	Hylidae	Dendropsophus oliveirai
530	Hylidae	Dendropsophus padreluna
531	Hylidae	Dendropsophus parviceps
532	Hylidae	Dendropsophus pauiniensis
533	Hylidae	Dendropsophus praestans
534	Hylidae	Dendropsophus pseudomeridianus
535	Hylidae	Dendropsophus rhodopeplus
536	Hylidae	Dendropsophus riveroi
537	Hylidae	Dendropsophus rossalleni
538	Hylidae	Dendropsophus rubicundulus
539	Hylidae	Dendropsophus ruschii
540	Hylidae	Dendropsophus sanborni
541	Hylidae	Dendropsophus sarayacuensis
542	Hylidae	Dendropsophus schubarti
543	Hylidae	Dendropsophus seniculus
544	Hylidae	Dendropsophus soaresi
545	Hylidae	Dendropsophus stingi
546	Hylidae	Dendropsophus subocularis
547	Hylidae	Dendropsophus timbeba
548	Hylidae	Dendropsophus triangulum
549	Hylidae	Dendropsophus tritaeniatus
550	Hylidae	Dendropsophus virolinensis
551	Hylidae	Dendropsophus walfordi
552	Hylidae	Dendropsophus werneri
553	Hylidae	Dendropsophus xapuriensis
554	Hylidae	Dendropsophus yaracuyanus
555	Microhylidae	Dermatonotus muelleri
556	Eleutherodactylidae	Diasporus anthrax
557	Eleutherodactylidae	Diasporus gularis

558	Eleutherodactylidae	Diasporus tinker
559	Hylidae	Dryaderces inframaculata
560	Hylidae	Dryaderces pearsoni
561	Dendrobatidae	Ectopoglossus atopoglossus
562	Dendrobatidae	Ectopoglossus confusus
563	Dendrobatidae	Ectopoglossus lacrimosus
564	Leptodactylidae	Edalorhina perezi
565	Microhylidae	Elachistocleis bicolor
566	Microhylidae	Elachistocleis carvalhoi
567	Microhylidae	Elachistocleis erythrogaster
568	Microhylidae	Elachistocleis helianneae
569	Microhylidae	Elachistocleis matogrosso
570	Microhylidae	Elachistocleis ovalis
571	Microhylidae	Elachistocleis panamensis
572	Microhylidae	Elachistocleis pearsei
573	Microhylidae	Elachistocleis piauiensis
574	Microhylidae	Elachistocleis skotogaster
575	Microhylidae	Elachistocleis surinamensis
576	Eleutherodactylidae	Eleutherodactylus bilineatus
577	Leptodactylidae	Engystomops coloradorum
578	Leptodactylidae	Engystomops freibergi
579	Leptodactylidae	Engystomops montubio
580	Leptodactylidae	Engystomops petersi
581	Leptodactylidae	Engystomops pustulatus
582	Dendrobatidae	Epipedobates anthonyi
583	Dendrobatidae	Epipedobates boulengeri
584	Dendrobatidae	Epipedobates espinosai
585	Dendrobatidae	Epipedobates machalilla
586	Dendrobatidae	Epipedobates tricolor
587	Centrolenidae	Espadarana andina
588	Centrolenidae	Espadarana audax
589	Centrolenidae	Espadarana callistomma
590	Centrolenidae	Espadarana durrellorum

591	Craugastoridae	Euparkerella cochranae
592	Craugastoridae	Euparkerella tridactyla
593	Alsodidae	Eupsophus calcaratus
594	Alsodidae	Eupsophus emiliopugini
595	Alsodidae	Eupsophus roseus
596	Alsodidae	Eupsophus vertebralis
597	Dendrobatidae	Excidobates captivus
598	Dendrobatidae	Excidobates condor
599	Dendrobatidae	Excidobates mysteriosus
600	Hemiphractidae	Flectonotus pygmaeus
601	Hemiphractidae	Fritziana fissilis
602	Hemiphractidae	Fritziana goeldii
603	Hemiphractidae	Fritziana ohausi
604	Bufonidae	Frostius erythrophthalmus
605	Bufonidae	Frostius pernambucensis
606	Hylidae	Gabohyla pauloalvini
607	Hemiphractidae	Gastrotheca abdita
608	Hemiphractidae	Gastrotheca aguaruna
609	Hemiphractidae	Gastrotheca albolineata
610	Hemiphractidae	Gastrotheca andaquiensis
611	Hemiphractidae	Gastrotheca antomia
612	Hemiphractidae	Gastrotheca aratia
613	Hemiphractidae	Gastrotheca argenteovirens
614	Hemiphractidae	Gastrotheca aureomaculata
615	Hemiphractidae	Gastrotheca bufona
616	Hemiphractidae	Gastrotheca christiani
617	Hemiphractidae	Gastrotheca chrysosticta
618	Hemiphractidae	Gastrotheca dendronastes
619	Hemiphractidae	Gastrotheca dunni
620	Hemiphractidae	Gastrotheca dysprosita
621	Hemiphractidae	Gastrotheca espeletia
622	Hemiphractidae	Gastrotheca excubitor
623	Hemiphractidae	Gastrotheca fissipes
624	Hemiphractidae	Gastrotheca galeata
-----	----------------	--------------------------
625	Hemiphractidae	Gastrotheca gracilis
626	Hemiphractidae	Gastrotheca griswoldi
627	Hemiphractidae	Gastrotheca guentheri
628	Hemiphractidae	Gastrotheca lateonota
629	Hemiphractidae	Gastrotheca litonedis
630	Hemiphractidae	Gastrotheca lojana
631	Hemiphractidae	Gastrotheca longipes
632	Hemiphractidae	Gastrotheca marsupiata
633	Hemiphractidae	Gastrotheca microdiscus
634	Hemiphractidae	Gastrotheca monticola
635	Hemiphractidae	Gastrotheca nebulanastes
636	Hemiphractidae	Gastrotheca nicefori
637	Hemiphractidae	Gastrotheca ochoai
638	Hemiphractidae	Gastrotheca oresbios
639	Hemiphractidae	Gastrotheca orophylax
640	Hemiphractidae	Gastrotheca ovifera
641	Hemiphractidae	Gastrotheca pacchamama
642	Hemiphractidae	Gastrotheca pachachacae
643	Hemiphractidae	Gastrotheca peruana
644	Hemiphractidae	Gastrotheca phalarosa
645	Hemiphractidae	Gastrotheca phelloderma
646	Hemiphractidae	Gastrotheca piperata
647	Hemiphractidae	Gastrotheca plumbea
648	Hemiphractidae	Gastrotheca pseustes
649	Hemiphractidae	Gastrotheca psychrophila
650	Hemiphractidae	Gastrotheca rebeccae
651	Hemiphractidae	Gastrotheca riobambae
652	Hemiphractidae	Gastrotheca ruizi
653	Hemiphractidae	Gastrotheca spectabilis
654	Hemiphractidae	Gastrotheca splendens
655	Hemiphractidae	Gastrotheca stictopleura
656	Hemiphractidae	Gastrotheca testudinea

657	Hemiphractidae	Gastrotheca walkeri
658	Hemiphractidae	Gastrotheca weinlandii
659	Craugastoridae	Geobatrachus walkeri
660	Craugastoridae	Haddadus aramunha
661	Craugastoridae	Haddadus binotatus
662	Microhylidae	Hamptophryne alios
663	Microhylidae	Hamptophryne boliviana
664	Hemiphractidae	Hemiphractus bubalus
665	Hemiphractidae	Hemiphractus fasciatus
666	Hemiphractidae	Hemiphractus helioi
667	Hemiphractidae	Hemiphractus johnsoni
668	Hemiphractidae	Hemiphractus proboscideus
669	Hemiphractidae	Hemiphractus scutatus
670	Craugastoridae	Holoaden bradei
671	Craugastoridae	Holoaden luederwaldti
672	Centrolenidae	Hyalinobatrachium aureoguttatum
673	Centrolenidae	Hyalinobatrachium bergeri
674	Centrolenidae	Hyalinobatrachium crurifasciatum
675	Centrolenidae	Hyalinobatrachium esmeralda
676	Centrolenidae	Hyalinobatrachium iaspidiense
677	Centrolenidae	Hyalinobatrachium ibama
678	Centrolenidae	Hyalinobatrachium kawense
679	Centrolenidae	Hyalinobatrachium mondolfii
680	Centrolenidae	Hyalinobatrachium munozorum
681	Centrolenidae	Hyalinobatrachium orientale
682	Centrolenidae	Hyalinobatrachium pellucidum
683	Centrolenidae	Hyalinobatrachium ruedai
684	Centrolenidae	Hyalinobatrachium tatayoi
685	Centrolenidae	Hyalinobatrachium taylori
686	Centrolenidae	Hyalinobatrachium tricolor
687	Centrolenidae	Hyalinobatrachium valerioi
688	Leptodactylidae	Hydrolaetare dantasi
689	Leptodactylidae	Hydrolaetare schmidti

690	Hylodidae	Hylodes amnicola
691	Hylodidae	Hylodes asper
692	Hylodidae	Hylodes babax
693	Hylodidae	Hylodes cardosoi
694	Hylodidae	Hylodes charadranaetes
695	Hylodidae	Hylodes dactylocinus
696	Hylodidae	Hylodes glaber
697	Hylodidae	Hylodes heyeri
698	Hylodidae	Hylodes lateristrigatus
699	Hylodidae	Hylodes magalhaesi
700	Hylodidae	Hylodes meridionalis
701	Hylodidae	Hylodes nasus
702	Hylodidae	Hylodes ornatus
703	Hylodidae	Hylodes otavioi
704	Hylodidae	Hylodes perplicatus
705	Hylodidae	Hylodes phyllodes
706	Hylodidae	Hylodes pipilans
707	Hylodidae	Hylodes regius
708	Hylodidae	Hylodes sazimai
709	Hylodidae	Hylodes uai
710	Hylodidae	Hylodes vanzolinii
711	Batrachylidae	Hylorina sylvatica
712	Hylidae	Hyloscirtus albopunctulatus
713	Hylidae	Hyloscirtus alytolylax
714	Hylidae	Hyloscirtus antioquia
715	Hylidae	Hyloscirtus armatus
716	Hylidae	Hyloscirtus bogotensis
717	Hylidae	Hyloscirtus callipeza
718	Hylidae	Hyloscirtus denticulentus
719	Hylidae	Hyloscirtus jahni
720	Hylidae	Hyloscirtus japreria
721	Hylidae	Hyloscirtus larinopygion
722	Hylidae	Hyloscirtus lascinius

723	Hylidae	Hyloscirtus lindae
724	Hylidae	Hyloscirtus lynchi
725	Hylidae	Hyloscirtus pacha
726	Hylidae	Hyloscirtus palmeri
727	Hylidae	Hyloscirtus pantostictus
728	Hylidae	Hyloscirtus phyllognathus
729	Hylidae	Hyloscirtus piceigularis
730	Hylidae	Hyloscirtus platydactylus
731	Hylidae	Hyloscirtus psarolaimus
732	Hylidae	Hyloscirtus ptychodactylus
733	Hylidae	Hyloscirtus simmonsi
734	Hylidae	Hyloscirtus staufferorum
735	Hylidae	Hyloscirtus tapichalaca
736	Hylidae	Hyloscirtus tigrinus
737	Hylidae	Hyloscirtus torrenticola
738	Dendrobatidae	Hyloxalus abditaurantius
739	Dendrobatidae	Hyloxalus anthracinus
740	Dendrobatidae	Hyloxalus awa
741	Dendrobatidae	Hyloxalus azureiventris
742	Dendrobatidae	Hyloxalus bocagei
743	Dendrobatidae	Hyloxalus breviquartus
744	Dendrobatidae	Hyloxalus cevallosi
745	Dendrobatidae	Hyloxalus chocoensis
746	Dendrobatidae	Hyloxalus craspedoceps
747	Dendrobatidae	Hyloxalus delatorreae
748	Dendrobatidae	Hyloxalus elachyhistus
749	Dendrobatidae	Hyloxalus eleutherodactylus
750	Dendrobatidae	Hyloxalus exasperatus
751	Dendrobatidae	Hyloxalus faciopunctulatus
752	Dendrobatidae	Hyloxalus fallax
753	Dendrobatidae	Hyloxalus fascianigrus
754	Dendrobatidae	Hyloxalus fuliginosus
755	Dendrobatidae	Hyloxalus idiomelus

756	Dendrobatidae	Hyloxalus infraguttatus
757	Dendrobatidae	Hyloxalus insulatus
758	Dendrobatidae	Hyloxalus italoi
759	Dendrobatidae	Hyloxalus lehmanni
760	Dendrobatidae	Hyloxalus leucophaeus
761	Dendrobatidae	Hyloxalus littoralis
762	Dendrobatidae	Hyloxalus maculosus
763	Dendrobatidae	Hyloxalus maquipucuna
764	Dendrobatidae	Hyloxalus mittermeieri
765	Dendrobatidae	Hyloxalus mystax
766	Dendrobatidae	Hyloxalus nexipus
767	Dendrobatidae	Hyloxalus peruvianus
768	Dendrobatidae	Hyloxalus pinguis
769	Dendrobatidae	Hyloxalus pulchellus
770	Dendrobatidae	Hyloxalus pulcherrimus
771	Dendrobatidae	Hyloxalus ramosi
772	Dendrobatidae	Hyloxalus ruizi
773	Dendrobatidae	Hyloxalus sauli
774	Dendrobatidae	Hyloxalus shuar
775	Dendrobatidae	Hyloxalus sordidatus
776	Dendrobatidae	Hyloxalus subpunctatus
777	Dendrobatidae	Hyloxalus sylvaticus
778	Dendrobatidae	Hyloxalus toachi
779	Dendrobatidae	Hyloxalus vergeli
780	Dendrobatidae	Hyloxalus vertebralis
781	Centrolenidae	Ikakogi tayrona
782	Rhinodermatidae	Insuetophrynus acarpicus
783	Brachycephalidae	Ischnocnema bolbodactyla
784	Brachycephalidae	lschnocnema epipeda
785	Brachycephalidae	Ischnocnema erythromera
786	Brachycephalidae	Ischnocnema guentheri
787	Brachycephalidae	Ischnocnema henselii
788	Brachycephalidae	Ischnocnema hoehnei

789	Brachycephalidae	Ischnocnema holti
790	Brachycephalidae	Ischnocnema izecksohni
791	Brachycephalidae	lschnocnema juipoca
792	Brachycephalidae	Ischnocnema lactea
793	Brachycephalidae	Ischnocnema manezinho
794	Brachycephalidae	Ischnocnema nasuta
795	Brachycephalidae	Ischnocnema nigriventris
796	Brachycephalidae	Ischnocnema octavioi
797	Brachycephalidae	Ischnocnema oea
798	Brachycephalidae	Ischnocnema parva
799	Brachycephalidae	Ischnocnema penaxavantinho
800	Brachycephalidae	Ischnocnema randorum
801	Brachycephalidae	Ischnocnema sambaqui
802	Brachycephalidae	Ischnocnema venancioi
803	Brachycephalidae	lschnocnema verrucosa
804	Hylidae	Itapotihyla langsdorffii
805	Ceratophryidae	Lepidobatrachus asper
806	Ceratophryidae	Lepidobatrachus laevis
807	Ceratophryidae	Lepidobatrachus llanensis
808	Leptodactylidae	Leptodactylus bolivianus
809	Leptodactylidae	Leptodactylus bufonius
810	Leptodactylidae	Leptodactylus caatingae
811	Leptodactylidae	Leptodactylus camaquara
812	Leptodactylidae	Leptodactylus chaquensis
813	Leptodactylidae	Leptodactylus colombiensis
814	Leptodactylidae	Leptodactylus cunicularius
815	Leptodactylidae	Leptodactylus cupreus
816	Leptodactylidae	Leptodactylus didymus
817	Leptodactylidae	Leptodactylus diedrus
818	Leptodactylidae	Leptodactylus discodactylus
819	Leptodactylidae	Leptodactylus elenae
820	Leptodactylidae	Leptodactylus flavopictus
821	Leptodactylidae	Leptodactylus furnarius

822	Leptodactylidae	Leptodactylus fuscus
823	Leptodactylidae	Leptodactylus gracilis
824	Leptodactylidae	Leptodactylus griseigularis
825	Leptodactylidae	Leptodactylus jolyi
826	Leptodactylidae	Leptodactylus knudseni
827	Leptodactylidae	Leptodactylus labrosus
828	Leptodactylidae	Leptodactylus labyrinthicus
829	Leptodactylidae	Leptodactylus laticeps
830	Leptodactylidae	Leptodactylus latinasus
831	Leptodactylidae	Leptodactylus latrans
832	Leptodactylidae	Leptodactylus lauramiriamae
833	Leptodactylidae	Leptodactylus leptodactyloides
834	Leptodactylidae	Leptodactylus lithonaetes
835	Leptodactylidae	Leptodactylus longirostris
836	Leptodactylidae	Leptodactylus myersi
837	Leptodactylidae	Leptodactylus mystaceus
838	Leptodactylidae	Leptodactylus mystacinus
839	Leptodactylidae	Leptodactylus natalensis
840	Leptodactylidae	Leptodactylus notoaktites
841	Leptodactylidae	Leptodactylus pallidirostris
842	Leptodactylidae	Leptodactylus paraensis
843	Leptodactylidae	Leptodactylus pascoensis
844	Leptodactylidae	Leptodactylus pentadactylus
845	Leptodactylidae	Leptodactylus peritoaktites
846	Leptodactylidae	Leptodactylus petersii
847	Leptodactylidae	Leptodactylus plaumanni
848	Leptodactylidae	Leptodactylus podicipinus
849	Leptodactylidae	Leptodactylus pustulatus
850	Leptodactylidae	Leptodactylus rhodomerus
851	Leptodactylidae	Leptodactylus rhodomystax
852	Leptodactylidae	Leptodactylus rhodonotus
853	Leptodactylidae	Leptodactylus riveroi
854	Leptodactylidae	Leptodactylus rugosus

855	Leptodactylidae	Leptodactylus sertanejo
856	Leptodactylidae	Leptodactylus spixi
857	Leptodactylidae	Leptodactylus stenodema
858	Leptodactylidae	Leptodactylus syphax
859	Leptodactylidae	Leptodactylus troglodytes
860	Leptodactylidae	Leptodactylus validus
861	Leptodactylidae	Leptodactylus vastus
862	Leptodactylidae	Leptodactylus ventrimaculatus
863	Leptodactylidae	Leptodactylus viridis
864	Leptodactylidae	Leptodactylus wagneri
865	Dendrobatidae	Leucostethus argyrogaster
866	Dendrobatidae	Leucostethus brachistriatus
867	Dendrobatidae	Leucostethus fraterdanieli
868	Dendrobatidae	Leucostethus fugax
869	Alsodidae	Limnomedusa macroglossa
870	Ranidae	Lithobates bwana
871	Ranidae	Lithobates palmipes
872	Leptodactylidae	Lithodytes lineatus
873	Craugastoridae	Lynchius flavomaculatus
874	Craugastoridae	Lynchius nebulanastes
875	Craugastoridae	Lynchius parkeri
876	Hylidae	Lysapsus bolivianus
877	Hylidae	Lysapsus caraya
878	Hylidae	Lysapsus laevis
879	Hylidae	Lysapsus limellum
880	Odontophrynidae	Macrogenioglottus alipioi
881	Aromobatidae	Mannophryne caquetio
882	Aromobatidae	Mannophryne herminae
883	Aromobatidae	Mannophryne lamarcai
884	Aromobatidae	Mannophryne molinai
885	Aromobatidae	Mannophryne vulcano
886	Hylodidae	Megaelosia apuana
887	Hylodidae	Megaelosia bocainensis

888	Hylodidae	Megaelosia boticariana
889	Hylodidae	Megaelosia goeldii
890	Hylodidae	Megaelosia lutzae
891	Bufonidae	Melanophryniscus admirabilis
892	Bufonidae	Melanophryniscus alipioi
893	Bufonidae	Melanophryniscus atroluteus
894	Bufonidae	Melanophryniscus cambaraensis
895	Bufonidae	Melanophryniscus cupreuscapularis
896	Bufonidae	Melanophryniscus devincenzii
897	Bufonidae	Melanophryniscus dorsalis
898	Bufonidae	Melanophryniscus estebani
899	Bufonidae	Melanophryniscus fulvoguttatus
900	Bufonidae	Melanophryniscus klappenbachi
901	Bufonidae	Melanophryniscus macrogranulosus
902	Bufonidae	Melanophryniscus montevidensis
903	Bufonidae	Melanophryniscus moreirae
904	Bufonidae	Melanophryniscus orejasmirandai
905	Bufonidae	Melanophryniscus pachyrhynus
906	Bufonidae	Melanophryniscus rubriventris
907	Bufonidae	Melanophryniscus sanmartini
908	Bufonidae	Melanophryniscus simplex
909	Bufonidae	Melanophryniscus spectabilis
910	Bufonidae	Melanophryniscus stelzneri
911	Bufonidae	Melanophryniscus tumifrons
912	Craugastoridae	Microkayla adenopleura
913	Craugastoridae	Microkayla chacaltaya
914	Craugastoridae	Microkayla iatamasi
915	Craugastoridae	Microkayla illimani
916	Craugastoridae	Microkayla wettsteini
917	Microhylidae	Myersiella microps
918	Hylidae	Myersiohyla liliae
919	Hylidae	Myersiohyla neblinaria

920	Bufonidae	Nannophryne cophotis
921	Bufonidae	Nannophryne corynetes
922	Bufonidae	Nannophryne variegata
923	Hylidae	Nesorohyla kanaima
924	Craugastoridae	Niceforonia adenobrachia
925	Craugastoridae	Niceforonia aderca
926	Craugastoridae	Niceforonia babax
927	Craugastoridae	Niceforonia brunnea
928	Craugastoridae	Niceforonia dolops
929	Craugastoridae	Niceforonia elassodiscus
930	Craugastoridae	Niceforonia fallaciosa
931	Craugastoridae	Niceforonia latens
932	Craugastoridae	Niceforonia lucida
933	Craugastoridae	Niceforonia mantipus
934	Craugastoridae	Niceforonia nana
935	Craugastoridae	Niceforonia nigrovittata
936	Craugastoridae	Niceforonia peraccai
937	Craugastoridae	Noblella carrascoicola
938	Craugastoridae	Noblella coloma
939	Craugastoridae	Noblella heyeri
940	Craugastoridae	Noblella lochites
941	Craugastoridae	Noblella lynchi
942	Craugastoridae	Noblella madreselva
943	Craugastoridae	Noblella myrmecoides
944	Craugastoridae	Noblella personina
945	Craugastoridae	Noblella peruviana
946	Craugastoridae	Noblella pygmaea
947	Craugastoridae	Noblella ritarasquinae
948	Hylidae	Nyctimantis rugiceps
949	Centrolenidae	Nymphargus anomalus
950	Centrolenidae	Nymphargus armatus
951	Centrolenidae	Nymphargus bejaranoi
952	Centrolenidae	Nymphargus cariticommatus

953	Centrolenidae	Nymphargus chami
954	Centrolenidae	Nymphargus chancas
955	Centrolenidae	Nymphargus cochranae
956	Centrolenidae	Nymphargus cristinae
957	Centrolenidae	Nymphargus garciae
958	Centrolenidae	Nymphargus grandisonae
959	Centrolenidae	Nymphargus griffithsi
960	Centrolenidae	Nymphargus ignotus
961	Centrolenidae	Nymphargus manduriacu
962	Centrolenidae	Nymphargus mariae
963	Centrolenidae	Nymphargus megacheirus
964	Centrolenidae	Nymphargus nephelophila
965	Centrolenidae	Nymphargus ocellatus
966	Centrolenidae	Nymphargus phenax
967	Centrolenidae	Nymphargus pluvialis
968	Centrolenidae	Nymphargus posadae
969	Centrolenidae	Nymphargus prasinus
970	Centrolenidae	Nymphargus rosada
971	Centrolenidae	Nymphargus ruizi
972	Centrolenidae	Nymphargus siren
973	Centrolenidae	Nymphargus spilotus
974	Centrolenidae	Nymphargus truebae
975	Centrolenidae	Nymphargus vicenteruedai
976	Centrolenidae	Nymphargus wileyi
977	Odontophrynidae	Odontophrynus americanus
978	Odontophrynidae	Odontophrynus carvalhoi
979	Odontophrynidae	Odontophrynus cordobae
980	Odontophrynidae	Odontophrynus cultripes
981	Odontophrynidae	Odontophrynus lavillai
982	Odontophrynidae	Odontophrynus occidentalis
983	Hylidae	Ololygon agilis
984	Hylidae	Ololygon albicans
985	Hylidae	Ololygon alcatraz

986	Hylidae	Ololygon angrensis
987	Hylidae	Ololygon arduous
988	Hylidae	Ololygon argyreornata
989	Hylidae	Ololygon ariadne
990	Hylidae	Ololygon aromothyella
991	Hylidae	Ololygon belloni
992	Hylidae	Ololygon berthae
993	Hylidae	Ololygon brieni
994	Hylidae	Ololygon canastrensis
995	Hylidae	Ololygon carnevallii
996	Hylidae	Ololygon catharinae
997	Hylidae	Ololygon centralis
998	Hylidae	Ololygon faivovichi
999	Hylidae	Ololygon flavoguttata
1000	Hylidae	Ololygon heyeri
1001	Hylidae	Ololygon hiemalis
1002	Hylidae	Ololygon humilis
1003	Hylidae	Ololygon jureia
1004	Hylidae	Ololygon kautskyi
1005	Hylidae	Ololygon littoralis
1006	Hylidae	Ololygon littoreus
1007	Hylidae	Ololygon longilinea
1008	Hylidae	Ololygon luizotavioi
1009	Hylidae	Ololygon machadoi
1010	Hylidae	Ololygon melloi
1011	Hylidae	Ololygon obtriangulata
1012	Hylidae	Ololygon perpusilla
1013	Hylidae	Ololygon ranki
1014	Hylidae	Ololygon rizibilis
1015	Hylidae	Ololygon trapicheiroi
1016	Hylidae	Ololygon v-signata
1017	Dendrobatidae	Oophaga anchicayensis
1018	Dendrobatidae	Oophaga occultator

Dendrobatidae	Oophaga solanensis
Dendrobatidae	Oophaga sylvatica
Craugastoridae	Oreobates amarakaeri
Craugastoridae	Oreobates ayacucho
Craugastoridae	Oreobates crepitans
Craugastoridae	Oreobates cruralis
Craugastoridae	Oreobates discoidalis
Craugastoridae	Oreobates gemcare
Craugastoridae	Oreobates granulosus
Craugastoridae	Oreobates lehri
Craugastoridae	Oreobates madidi
Craugastoridae	Oreobates quixensis
Craugastoridae	Oreobates saxatilis
Bufonidae	Oreophrynella dendronastes
Bufonidae	Oreophrynella macconnelli
Bufonidae	Oreophrynella nigra
Bufonidae	Oreophrynella quelchii
Bufonidae	Oreophrynella seegobini
Bufonidae	Oreophrynella vasquezi
Bufonidae	Osornophryne antisana
Bufonidae	Osornophryne bufoniformis
Bufonidae	Osornophryne guacamayo
Bufonidae	Osornophryne percrassa
Bufonidae	Osornophryne puruanta
Hylidae	Osteocephalus alboguttatus
Hylidae	Osteocephalus buckleyi
Hylidae	Osteocephalus cabrerai
Hylidae	Osteocephalus castaneicola
Hylidae	Osteocephalus deridens
Hylidae	Osteocephalus elkejungingerae
Hylidae	Osteocephalus fuscifacies
Hylidae	Osteocephalus heyeri
Hylidae	Osteocephalus leoniae
	Dendrobatidae Dendrobatidae Craugastoridae Craugastoridae Craugastoridae Craugastoridae Craugastoridae Craugastoridae Craugastoridae Craugastoridae Craugastoridae Craugastoridae Bufonida

1052	Hylidae	Osteocephalus leprieurii
1053	Hylidae	Osteocephalus mutabor
1054	Hylidae	Osteocephalus oophagus
1055	Hylidae	Osteocephalus planiceps
1056	Hylidae	Osteocephalus subtilis
1057	Hylidae	Osteocephalus taurinus
1058	Hylidae	Osteocephalus verruciger
1059	Hylidae	Osteocephalus yasuni
1060	Microhylidae	Otophryne pyburni
1061	Microhylidae	Otophryne robusta
1062	Microhylidae	Otophryne steyermarki
1063	Leptodactylidae	Paratelmatobius cardosoi
1064	Leptodactylidae	Paratelmatobius gaigeae
1065	Leptodactylidae	Paratelmatobius lutzii
1066	Leptodactylidae	Paratelmatobius poecilogaster
1067	Dendrobatidae	Paruwrobates erythromos
1068	Dendrobatidae	Paruwrobates whymperi
1069	Phyllomedusidae	Phasmahyla cochranae
1070	Phyllomedusidae	Phasmahyla exilis
1071	Phyllomedusidae	Phasmahyla guttata
1072	Phyllomedusidae	Phasmahyla jandaia
1073	Phyllomedusidae	Phasmahyla spectabilis
1074	Phyllomedusidae	Phrynomedusa marginata
1075	Craugastoridae	Phrynopus anancites
1076	Craugastoridae	Phrynopus badius
1077	Craugastoridae	Phrynopus bracki
1078	Craugastoridae	Phrynopus capitalis
1079	Craugastoridae	Phrynopus curator
1080	Craugastoridae	Phrynopus daemon
1081	Craugastoridae	Phrynopus dagmarae
1082	Craugastoridae	Phrynopus dumicola
1083	Craugastoridae	Phrynopus horstpauli
1084	Craugastoridae	Phrynopus interstinctus

1085	Craugastoridae	Phrynopus inti
1086	Craugastoridae	Phrynopus juninensis
1087	Craugastoridae	Phrynopus montium
1088	Craugastoridae	Phrynopus personatus
1089	Craugastoridae	Phrynopus peruanus
1090	Craugastoridae	Phrynopus thompsoni
1091	Craugastoridae	Phrynopus tribulosus
1092	Craugastoridae	Phrynopus unchog
1093	Craugastoridae	Phrynopus vestigiatus
1094	Dendrobatidae	Phyllobates aurotaenia
1095	Dendrobatidae	Phyllobates bicolor
1096	Dendrobatidae	Phyllobates terribilis
1097	Hylidae	Phyllodytes edelmoi
1098	Hylidae	Phyllodytes gyrinaethes
1099	Hylidae	Phyllodytes kautskyi
1100	Hylidae	Phyllodytes luteolus
1101	Hylidae	Phyllodytes melanomystax
1102	Hylidae	Phyllodytes tuberculosus
1103	Hylidae	Phyllodytes wuchereri
1104	Phyllomedusidae	Phyllomedusa araguari
1105	Phyllomedusidae	Phyllomedusa bahiana
1106	Phyllomedusidae	Phyllomedusa bicolor
1107	Phyllomedusidae	Phyllomedusa boliviana
1108	Phyllomedusidae	Phyllomedusa burmeisteri
1109	Phyllomedusidae	Phyllomedusa camba
1110	Phyllomedusidae	Phyllomedusa coelestis
1111	Phyllomedusidae	Phyllomedusa distincta
1112	Phyllomedusidae	Phyllomedusa iheringii
1113	Phyllomedusidae	Phyllomedusa itacolomi
1114	Phyllomedusidae	Phyllomedusa sauvagii
1115	Phyllomedusidae	Phyllomedusa tarsius
1116	Phyllomedusidae	Phyllomedusa tetraploidea
1117	Phyllomedusidae	Phyllomedusa trinitatis

1118	Phyllomedusidae	Phyllomedusa vaillantii
1119	Phyllomedusidae	Phyllomedusa venusta
1120	Leptodactylidae	Physalaemus aguirrei
1121	Leptodactylidae	Physalaemus albifrons
1122	Leptodactylidae	Physalaemus albonotatus
1123	Leptodactylidae	Physalaemus atlanticus
1124	Leptodactylidae	Physalaemus barrioi
1125	Leptodactylidae	Physalaemus biligonigerus
1126	Leptodactylidae	Physalaemus bokermanni
1127	Leptodactylidae	Physalaemus camacan
1128	Leptodactylidae	Physalaemus centralis
1129	Leptodactylidae	Physalaemus cicada
1130	Leptodactylidae	Physalaemus crombiei
1131	Leptodactylidae	Physalaemus cuqui
1132	Leptodactylidae	Physalaemus cuvieri
1133	Leptodactylidae	Physalaemus deimaticus
1134	Leptodactylidae	Physalaemus ephippifer
1135	Leptodactylidae	Physalaemus erikae
1136	Leptodactylidae	Physalaemus erythros
1137	Leptodactylidae	Physalaemus evangelistai
1138	Leptodactylidae	Physalaemus fernandezae
1139	Leptodactylidae	Physalaemus fischeri
1140	Leptodactylidae	Physalaemus gracilis
1141	Leptodactylidae	Physalaemus henselii
1142	Leptodactylidae	Physalaemus jordanensis
1143	Leptodactylidae	Physalaemus kroyeri
1144	Leptodactylidae	Physalaemus lisei
1145	Leptodactylidae	Physalaemus maculiventris
1146	Leptodactylidae	Physalaemus marmoratus
1147	Leptodactylidae	Physalaemus maximus
1148	Leptodactylidae	Physalaemus moreirae
1149	Leptodactylidae	Physalaemus nanus
1150	Leptodactylidae	Physalaemus nattereri

1151	Leptodactylidae	Physalaemus obtectus
1152	Leptodactylidae	Physalaemus olfersii
1153	Leptodactylidae	Physalaemus riograndensis
1154	Leptodactylidae	Physalaemus rupestris
1155	Leptodactylidae	Physalaemus santafecinus
1156	Leptodactylidae	Physalaemus signifer
1157	Leptodactylidae	Physalaemus soaresi
1158	Leptodactylidae	Physalaemus spiniger
1159	Eleutherodactylidae	Phyzelaphryne miriamae
1160	Pipidae	Pipa arrabali
1161	Pipidae	Pipa aspera
1162	Pipidae	Pipa carvalhoi
1163	Pipidae	Pipa myersi
1164	Pipidae	Pipa parva
1165	Pipidae	Pipa pipa
1166	Pipidae	Pipa snethlageae
1167	Phyllomedusidae	Pithecopus ayeaye
1168	Phyllomedusidae	Pithecopus azureus
1169	Phyllomedusidae	Pithecopus centralis
1170	Phyllomedusidae	Pithecopus hypochondrialis
1171	Phyllomedusidae	Pithecopus megacephalus
1172	Phyllomedusidae	Pithecopus nordestinus
1173	Phyllomedusidae	Pithecopus oreades
1174	Phyllomedusidae	Pithecopus palliatus
1175	Phyllomedusidae	Pithecopus rohdei
1176	Leptodactylidae	Pleurodema bibroni
1177	Leptodactylidae	Pleurodema borellii
1178	Leptodactylidae	Pleurodema brachyops
1179	Leptodactylidae	Pleurodema bufoninum
1180	Leptodactylidae	Pleurodema cinereum
1181	Leptodactylidae	Pleurodema diplolister
1182	Leptodactylidae	Pleurodema guayapae
1183	Leptodactylidae	Pleurodema kriegi

1184	Leptodactylidae	Pleurodema marmoratum
1185	Leptodactylidae	Pleurodema nebulosum
1186	Leptodactylidae	Pleurodema thaul
1187	Leptodactylidae	Pleurodema tucumanum
1188	Craugastoridae	Pristimantis aaptus
1189	Craugastoridae	Pristimantis acatallelus
1190	Craugastoridae	Pristimantis acerus
1191	Craugastoridae	Pristimantis achatinus
1192	Craugastoridae	Pristimantis achuar
1193	Craugastoridae	Pristimantis actinolaimus
1194	Craugastoridae	Pristimantis actites
1195	Craugastoridae	Pristimantis acuminatus
1196	Craugastoridae	Pristimantis acutirostris
1197	Craugastoridae	Pristimantis aemulatus
1198	Craugastoridae	Pristimantis affinis
1199	Craugastoridae	Pristimantis alalocophus
1200	Craugastoridae	Pristimantis albertus
1201	Craugastoridae	Pristimantis altamazonicus
1202	Craugastoridae	Pristimantis altamnis
1203	Craugastoridae	Pristimantis anemerus
1204	Craugastoridae	Pristimantis angustilineatus
1205	Craugastoridae	Pristimantis aniptopalmatus
1206	Craugastoridae	Pristimantis anolirex
1207	Craugastoridae	Pristimantis apiculatus
1208	Craugastoridae	Pristimantis appendiculatus
1209	Craugastoridae	Pristimantis ardalonychus
1210	Craugastoridae	Pristimantis atratus
1211	Craugastoridae	Pristimantis attenboroughi
1212	Craugastoridae	Pristimantis aurantiguttatus
1213	Craugastoridae	Pristimantis aureolineatus
1214	Craugastoridae	Pristimantis aureoventris
1215	Craugastoridae	Pristimantis bacchus
1216	Craugastoridae	Pristimantis baiotis

Craugastoridae Craugastoridae	Pristimantis balionotus Pristimantis barvecuus
Craugastoridae	Pristimantis barvecuus
Craugastoridae	Pristimantis batrachites
Craugastoridae	Pristimantis bearsei
Craugastoridae	Pristimantis bellona
Craugastoridae	Pristimantis bernali
Craugastoridae	Pristimantis bicolor
Craugastoridae	Pristimantis bipunctatus
Craugastoridae	Pristimantis bogotensis
Craugastoridae	Pristimantis boucephalus
Craugastoridae	Pristimantis boulengeri
Craugastoridae	Pristimantis bounides
Craugastoridae	Pristimantis brevifrons
Craugastoridae	Pristimantis bromeliaceus
Craugastoridae	Pristimantis buccinator
Craugastoridae	Pristimantis buckleyi
Craugastoridae	Pristimantis cabrerai
Craugastoridae	Pristimantis cajamarcensis
Craugastoridae	Pristimantis calcaratus
Craugastoridae	Pristimantis calcarulatus
Craugastoridae	Pristimantis capitonis
Craugastoridae	Pristimantis caprifer
Craugastoridae	Pristimantis carlossanchezi
Craugastoridae	Pristimantis carmelitae
Craugastoridae	Pristimantis carranguerorum
Craugastoridae	Pristimantis carvalhoi
Craugastoridae	Pristimantis cedros
Craugastoridae	Pristimantis celator
Craugastoridae	Pristimantis ceuthospilus
Craugastoridae	Pristimantis chalceus
Craugastoridae	Pristimantis chiastonotus
	Drictimontic chimu
Craugastoridae	
	Craugastoridae Craugastoridae

1250	Craugastoridae	Pristimantis chrysops
1251	Craugastoridae	Pristimantis citriogaster
1252	Craugastoridae	Pristimantis colodactylus
1253	Craugastoridae	Pristimantis colomai
1254	Craugastoridae	Pristimantis colonensis
1255	Craugastoridae	Pristimantis colostichos
1256	Craugastoridae	Pristimantis condor
1257	Craugastoridae	Pristimantis conspicillatus
1258	Craugastoridae	Pristimantis cordovae
1259	Craugastoridae	Pristimantis corniger
1260	Craugastoridae	Pristimantis corrugatus
1261	Craugastoridae	Pristimantis cosnipatae
1262	Craugastoridae	Pristimantis cremnobates
1263	Craugastoridae	Pristimantis crenunguis
1264	Craugastoridae	Pristimantis cristinae
1265	Craugastoridae	Pristimantis croceoinguinis
1266	Craugastoridae	Pristimantis crucifer
1267	Craugastoridae	Pristimantis cruciocularis
1268	Craugastoridae	Pristimantis cryophilius
1269	Craugastoridae	Pristimantis cryptomelas
1270	Craugastoridae	Pristimantis cuentasi
1271	Craugastoridae	Pristimantis curtipes
1272	Craugastoridae	Pristimantis danae
1273	Craugastoridae	Pristimantis degener
1274	Craugastoridae	Pristimantis deinops
1275	Craugastoridae	Pristimantis delicatus
1276	Craugastoridae	Pristimantis delius
1277	Craugastoridae	Pristimantis dendrobatoides
1278	Craugastoridae	Pristimantis devillei
1279	Craugastoridae	Pristimantis diadematus
1280	Craugastoridae	Pristimantis diaphonus
1281	Craugastoridae	Pristimantis diogenes
1282	Craugastoridae	Pristimantis dissimulatus

1283	Craugastoridae	Pristimantis divnae
1284	Craugastoridae	Pristimantis dorado
1285	Craugastoridae	Pristimantis dorsopictus
1286	Craugastoridae	Pristimantis duellmani
1287	Craugastoridae	Pristimantis duende
1288	Craugastoridae	Pristimantis dundeei
1289	Craugastoridae	Pristimantis elegans
1290	Craugastoridae	Pristimantis enigmaticus
1291	Craugastoridae	Pristimantis epacrus
1292	Craugastoridae	Pristimantis eremitus
1293	Craugastoridae	Pristimantis eriphus
1294	Craugastoridae	Pristimantis ernesti
1295	Craugastoridae	Pristimantis erythropleura
1296	Craugastoridae	Pristimantis esmeraldas
1297	Craugastoridae	Pristimantis eugeniae
1298	Craugastoridae	Pristimantis eurydactylus
1299	Craugastoridae	Pristimantis exoristus
1300	Craugastoridae	Pristimantis factiosus
1301	Craugastoridae	Pristimantis fallax
1302	Craugastoridae	Pristimantis farisorum
1303	Craugastoridae	Pristimantis fenestratus
1304	Craugastoridae	Pristimantis festae
1305	Craugastoridae	Pristimantis fetosus
1306	Craugastoridae	Pristimantis frater
1307	Craugastoridae	Pristimantis galdi
1308	Craugastoridae	Pristimantis ganonotus
1309	Craugastoridae	Pristimantis gentryi
1310	Craugastoridae	Pristimantis ginesi
1311	Craugastoridae	Pristimantis gladiator
1312	Craugastoridae	Pristimantis glandulosus
1313	Craugastoridae	Pristimantis gracilis
1314	Craugastoridae	Pristimantis grandiceps
1315	Craugastoridae	Pristimantis guaiquinimensis

1316	Craugastoridae	Pristimantis gutturalis
1317	Craugastoridae	Pristimantis hamiotae
1318	Craugastoridae	Pristimantis hectus
1319	Craugastoridae	Pristimantis helvolus
1320	Craugastoridae	Pristimantis huicundo
1321	Craugastoridae	Pristimantis humboldti
1322	Craugastoridae	Pristimantis hybotragus
1323	Craugastoridae	Pristimantis ignicolor
1324	Craugastoridae	Pristimantis illotus
1325	Craugastoridae	Pristimantis imitatrix
1326	Craugastoridae	Pristimantis imthurni
1327	Craugastoridae	Pristimantis incanus
1328	Craugastoridae	Pristimantis incertus
1329	Craugastoridae	Pristimantis incomptus
1330	Craugastoridae	Pristimantis infraguttatus
1331	Craugastoridae	Pristimantis inguinalis
1332	Craugastoridae	Pristimantis insignitus
1333	Craugastoridae	Pristimantis inusitatus
1334	Craugastoridae	Pristimantis ixalus
1335	Craugastoridae	Pristimantis jaguensis
1336	Craugastoridae	Pristimantis jamescameroni
1337	Craugastoridae	Pristimantis jester
1338	Craugastoridae	Pristimantis johannesdei
1339	Craugastoridae	Pristimantis jorgevelosai
1340	Craugastoridae	Pristimantis juanchoi
1341	Craugastoridae	Pristimantis jubatus
1342	Craugastoridae	Pristimantis katoptroides
1343	Craugastoridae	Pristimantis kelephus
1344	Craugastoridae	Pristimantis kichwarum
1345	Craugastoridae	Pristimantis kirklandi
1346	Craugastoridae	Pristimantis labiosus
1347	Craugastoridae	Pristimantis lacrimosus
1348	Craugastoridae	Pristimantis lanthanites

1349	Craugastoridae	Pristimantis lasalleorum
1350	Craugastoridae	Pristimantis laticlavius
1351	Craugastoridae	Pristimantis latidiscus
1352	Craugastoridae	Pristimantis lemur
1353	Craugastoridae	Pristimantis leoni
1354	Craugastoridae	Pristimantis leopardus
1355	Craugastoridae	Pristimantis leptolophus
1356	Craugastoridae	Pristimantis leucopus
1357	Craugastoridae	Pristimantis leucorrhinus
1358	Craugastoridae	Pristimantis librarius
1359	Craugastoridae	Pristimantis lichenoides
1360	Craugastoridae	Pristimantis limoncochensis
1361	Craugastoridae	Pristimantis lindae
1362	Craugastoridae	Pristimantis lirellus
1363	Craugastoridae	Pristimantis lividus
1364	Craugastoridae	Pristimantis Ilojsintuta
1365	Craugastoridae	Pristimantis loustes
1366	Craugastoridae	Pristimantis luscombei
1367	Craugastoridae	Pristimantis luteolateralis
1368	Craugastoridae	Pristimantis lutitus
1369	Craugastoridae	Pristimantis lymani
1370	Craugastoridae	Pristimantis lynchi
1371	Craugastoridae	Pristimantis maculosus
1372	Craugastoridae	Pristimantis malkini
1373	Craugastoridae	Pristimantis marmoratus
1374	Craugastoridae	Pristimantis martiae
1375	Craugastoridae	Pristimantis medemi
1376	Craugastoridae	Pristimantis megalops
1377	Craugastoridae	Pristimantis melanogaster
1378	Craugastoridae	Pristimantis mendax
1379	Craugastoridae	Pristimantis merostictus
1380	Craugastoridae	Pristimantis metabates
1381	Craugastoridae	Pristimantis minutulus

1382	Craugastoridae	Pristimantis miyatai
1383	Craugastoridae	Pristimantis mnionaetes
1384	Craugastoridae	Pristimantis modipeplus
1385	Craugastoridae	Pristimantis molybrignus
1386	Craugastoridae	Pristimantis muricatus
1387	Craugastoridae	Pristimantis muscosus
1388	Craugastoridae	Pristimantis mutabilis
1389	Craugastoridae	Pristimantis myersi
1390	Craugastoridae	Pristimantis myops
1391	Craugastoridae	Pristimantis nephophilus
1392	Craugastoridae	Pristimantis nervicus
1393	Craugastoridae	Pristimantis nicefori
1394	Craugastoridae	Pristimantis nigrogriseus
1395	Craugastoridae	Pristimantis nyctophylax
1396	Craugastoridae	Pristimantis obmutescens
1397	Craugastoridae	Pristimantis ocellatus
1398	Craugastoridae	Pristimantis ockendeni
1399	Craugastoridae	Pristimantis ocreatus
1400	Craugastoridae	Pristimantis olivaceus
1401	Craugastoridae	Pristimantis omeviridis
1402	Craugastoridae	Pristimantis orcesi
1403	Craugastoridae	Pristimantis orcus
1404	Craugastoridae	Pristimantis orestes
1405	Craugastoridae	Pristimantis ornatissimus
1406	Craugastoridae	Pristimantis ornatus
1407	Craugastoridae	Pristimantis orpacobates
1408	Craugastoridae	Pristimantis orphnolaimus
1409	Craugastoridae	Pristimantis ortizi
1410	Craugastoridae	Pristimantis padiali
1411	Craugastoridae	Pristimantis padrecarlosi
1412	Craugastoridae	Pristimantis pahuma
1413	Craugastoridae	Pristimantis paisa
1414	Craugastoridae	Pristimantis palmeri

1415	Craugastoridae	Pristimantis pardalinus
1416	Craugastoridae	Pristimantis parectatus
1417	Craugastoridae	Pristimantis parvillus
1418	Craugastoridae	Pristimantis pastazensis
1419	Craugastoridae	Pristimantis pataikos
1420	Craugastoridae	Pristimantis paulodutrai
1421	Craugastoridae	Pristimantis paululus
1422	Craugastoridae	Pristimantis penelopus
1423	Craugastoridae	Pristimantis peraticus
1424	Craugastoridae	Pristimantis percnopterus
1425	Craugastoridae	Pristimantis permixtus
1426	Craugastoridae	Pristimantis peruvianus
1427	Craugastoridae	Pristimantis petersi
1428	Craugastoridae	Pristimantis petrobardus
1429	Craugastoridae	Pristimantis phalarus
1430	Craugastoridae	Pristimantis pharangobates
1431	Craugastoridae	Pristimantis philipi
1432	Craugastoridae	Pristimantis phoxocephalus
1433	Craugastoridae	Pristimantis phragmipleuron
1434	Craugastoridae	Pristimantis piceus
1435	Craugastoridae	Pristimantis pinguis
1436	Craugastoridae	Pristimantis platychilus
1437	Craugastoridae	Pristimantis platydactylus
1438	Craugastoridae	Pristimantis pluvialis
1439	Craugastoridae	Pristimantis polychrus
1440	Craugastoridae	Pristimantis prolatus
1441	Craugastoridae	Pristimantis proserpens
1442	Craugastoridae	Pristimantis pseudoacuminatus
1443	Craugastoridae	Pristimantis pteridophilus
1444	Craugastoridae	Pristimantis ptochus
1445	Craugastoridae	Pristimantis pugnax
1446	Craugastoridae	Pristimantis puipui
1447	Craugastoridae	Pristimantis pulchridormientes

1448	Craugastoridae	Pristimantis pulvinatus
1449	Craugastoridae	Pristimantis pycnodermis
1450	Craugastoridae	Pristimantis pyrrhomerus
1451	Craugastoridae	Pristimantis quantus
1452	Craugastoridae	Pristimantis quaquaversus
1453	Craugastoridae	Pristimantis quicato
1454	Craugastoridae	Pristimantis quinquagesimus
1455	Craugastoridae	Pristimantis racemus
1456	Craugastoridae	Pristimantis ramagii
1457	Craugastoridae	Pristimantis renjiforum
1458	Craugastoridae	Pristimantis repens
1459	Craugastoridae	Pristimantis restrepoi
1460	Craugastoridae	Pristimantis rhabdolaemus
1461	Craugastoridae	Pristimantis rhodoplichus
1462	Craugastoridae	Pristimantis rhodostichus
1463	Craugastoridae	Pristimantis rivasi
1464	Craugastoridae	Pristimantis riveroi
1465	Craugastoridae	Pristimantis riveti
1466	Craugastoridae	Pristimantis rosadoi
1467	Craugastoridae	Pristimantis roseus
1468	Craugastoridae	Pristimantis rubicundus
1469	Craugastoridae	Pristimantis ruedai
1470	Craugastoridae	Pristimantis rufioculis
1471	Craugastoridae	Pristimantis ruthveni
1472	Craugastoridae	Pristimantis sagittulus
1473	Craugastoridae	Pristimantis salaputium
1474	Craugastoridae	Pristimantis saltissimus
1475	Craugastoridae	Pristimantis sanctaemartae
1476	Craugastoridae	Pristimantis sanguineus
1477	Craugastoridae	Pristimantis satagius
1478	Craugastoridae	Pristimantis schultei
1479	Craugastoridae	Pristimantis scoloblepharus
1480	Craugastoridae	Pristimantis scolodiscus

1481	Craugastoridae	Pristimantis scopaeus
1482	Craugastoridae	Pristimantis serendipitus
1483	Craugastoridae	Pristimantis signifer
1484	Craugastoridae	Pristimantis silverstonei
1485	Craugastoridae	Pristimantis simonbolivari
1486	Craugastoridae	Pristimantis simonsii
1487	Craugastoridae	Pristimantis simoteriscus
1488	Craugastoridae	Pristimantis simoterus
1489	Craugastoridae	Pristimantis skydmainos
1490	Craugastoridae	Pristimantis sobetes
1491	Craugastoridae	Pristimantis spilogaster
1492	Craugastoridae	Pristimantis spinosus
1493	Craugastoridae	Pristimantis sternothylax
1494	Craugastoridae	Pristimantis stictogaster
1495	Craugastoridae	Pristimantis stictus
1496	Craugastoridae	Pristimantis subsigillatus
1497	Craugastoridae	Pristimantis suetus
1498	Craugastoridae	Pristimantis supernatis
1499	Craugastoridae	Pristimantis surdus
1500	Craugastoridae	Pristimantis susaguae
1501	Craugastoridae	Pristimantis taciturnus
1502	Craugastoridae	Pristimantis taeniatus
1503	Craugastoridae	Pristimantis tantanti
1504	Craugastoridae	Pristimantis tayrona
1505	Craugastoridae	Pristimantis tenebrionis
1506	Craugastoridae	Pristimantis terraebolivaris
1507	Craugastoridae	Pristimantis thectopternus
1508	Craugastoridae	Pristimantis thymalopsoides
1509	Craugastoridae	Pristimantis thymelensis
1510	Craugastoridae	Pristimantis toftae
1511	Craugastoridae	Pristimantis torrenticola
1512	Craugastoridae	Pristimantis trachyblepharis
1513	Craugastoridae	Pristimantis tribulosus

1514	Craugastoridae	Pristimantis truebae
1515	Craugastoridae	Pristimantis tubernasus
1516	Craugastoridae	Pristimantis uisae
1517	Craugastoridae	Pristimantis unistrigatus
1518	Craugastoridae	Pristimantis uranobates
1519	Craugastoridae	Pristimantis vanadise
1520	Craugastoridae	Pristimantis variabilis
1521	Craugastoridae	Pristimantis veletis
1522	Craugastoridae	Pristimantis ventrimarmoratus
1523	Craugastoridae	Pristimantis verecundus
1524	Craugastoridae	Pristimantis versicolor
1525	Craugastoridae	Pristimantis vertebralis
1526	Craugastoridae	Pristimantis vicarius
1527	Craugastoridae	Pristimantis vidua
1528	Craugastoridae	Pristimantis viejas
1529	Craugastoridae	Pristimantis vilarsi
1530	Craugastoridae	Pristimantis vinhai
1531	Craugastoridae	Pristimantis viridicans
1532	Craugastoridae	Pristimantis viridis
1533	Craugastoridae	Pristimantis w-nigrum
1534	Craugastoridae	Pristimantis walkeri
1535	Craugastoridae	Pristimantis waoranii
1536	Craugastoridae	Pristimantis wiensi
1537	Craugastoridae	Pristimantis xeniolum
1538	Craugastoridae	Pristimantis xylochobates
1539	Craugastoridae	Pristimantis yukpa
1540	Craugastoridae	Pristimantis yuruaniensis
1541	Craugastoridae	Pristimantis zeuctotylus
1542	Craugastoridae	Pristimantis zimmermanae
1543	Craugastoridae	Pristimantis zoilae
1544	Craugastoridae	Pristimantis zophus
1545	Odontophrynidae	Proceratophrys appendiculata
1546	Odontophrynidae	Proceratophrys avelinoi

1547	Odontophrypidae	Proceratophrys bigibbosa
1540	Odoptophrynidae	
1548	Odontophrynidae	Proceratophrys boler
1549	Odontophrynidae	Proceratophrys brauni
1550	Odontophrynidae	Proceratophrys concavitympanum
1551	Odontophrynidae	Proceratophrys cristiceps
1552	Odontophrynidae	Proceratophrys cururu
1553	Odontophrynidae	Proceratophrys fryi
1554	Odontophrynidae	Proceratophrys goyana
1555	Odontophrynidae	Proceratophrys laticeps
1556	Odontophrynidae	Proceratophrys melanopogon
1557	Odontophrynidae	Proceratophrys moehringi
1558	Odontophrynidae	Proceratophrys moratoi
1559	Odontophrynidae	Proceratophrys palustris
1560	Odontophrynidae	Proceratophrys paviotii
1561	Odontophrynidae	Proceratophrys phyllostomus
1562	Odontophrynidae	Proceratophrys salvatori
1563	Odontophrynidae	Proceratophrys schirchi
1564	Odontophrynidae	Proceratophrys subguttata
1565	Odontophrynidae	Proceratophrys vielliardi
1566	Hylidae	Pseudis bolbodactyla
1567	Hylidae	Pseudis cardosoi
1568	Hylidae	Pseudis fusca
1569	Hylidae	Pseudis minuta
1570	Hylidae	Pseudis paradoxa
1571	Hylidae	Pseudis platensis
1572	Hylidae	Pseudis tocantins
1573	Leptodactylidae	Pseudopaludicola boliviana
1574	Leptodactylidae	Pseudopaludicola canga
1575	Leptodactylidae	Pseudopaludicola falcipes
1576	Leptodactylidae	Pseudopaludicola llanera
1577	Leptodactylidae	Pseudopaludicola mineira
1578	Leptodactylidae	Pseudopaludicola mystacalis
1579	Leptodactylidae	Pseudopaludicola pusilla

1580	Leptodactylidae	Pseudopaludicola saltica
1581	Leptodactylidae	Pseudopaludicola ternetzi
1582	Craugastoridae	Psychrophrynella bagrecito
1583	Craugastoridae	Psychrophrynella chirihampatu
1584	Craugastoridae	Psychrophrynella usurpator
1585	Dendrobatidae	Ranitomeya amazonica
1586	Dendrobatidae	Ranitomeya benedicta
1587	Dendrobatidae	Ranitomeya defleri
1588	Dendrobatidae	Ranitomeya duellmani
1589	Dendrobatidae	Ranitomeya fantastica
1590	Dendrobatidae	Ranitomeya flavovittata
1591	Dendrobatidae	Ranitomeya imitator
1592	Dendrobatidae	Ranitomeya reticulata
1593	Dendrobatidae	Ranitomeya sirensis
1594	Dendrobatidae	Ranitomeya summersi
1595	Dendrobatidae	Ranitomeya uakarii
1596	Dendrobatidae	Ranitomeya vanzolinii
1597	Dendrobatidae	Ranitomeya variabilis
1598	Dendrobatidae	Ranitomeya ventrimaculata
1599	Dendrobatidae	Ranitomeya yavaricola
1600	Bufonidae	Rhaebo andinophrynoides
1601	Bufonidae	Rhaebo blombergi
1602	Bufonidae	Rhaebo caeruleostictus
1603	Bufonidae	Rhaebo ceratophrys
1604	Bufonidae	Rhaebo colomai
1605	Bufonidae	Rhaebo glaberrimus
1606	Bufonidae	Rhaebo guttatus
1607	Bufonidae	Rhaebo hypomelas
1608	Bufonidae	Rhaebo nasicus
1609	Bufonidae	Rhaebo olallai
1610	Aromobatidae	Rheobates palmatus
1611	Aromobatidae	Rheobates pseudopalmatus
1612	Bufonidae	Rhinella abei

1613	Bufonidae	Rhinella achalensis
1614	Bufonidae	Rhinella achavali
1615	Bufonidae	Rhinella acutirostris
1616	Bufonidae	Rhinella amabilis
1617	Bufonidae	Rhinella arborescandens
1618	Bufonidae	Rhinella arenarum
1619	Bufonidae	Rhinella arunco
1620	Bufonidae	Rhinella atacamensis
1621	Bufonidae	Rhinella beebei
1622	Bufonidae	Rhinella bergi
1623	Bufonidae	Rhinella castaneotica
1624	Bufonidae	Rhinella cerradensis
1625	Bufonidae	Rhinella chavin
1626	Bufonidae	Rhinella cristinae
1627	Bufonidae	Rhinella crucifer
1628	Bufonidae	Rhinella dapsilis
1629	Bufonidae	Rhinella diptycha
1630	Bufonidae	Rhinella dorbignyi
1631	Bufonidae	Rhinella fernandezae
1632	Bufonidae	Rhinella festae
1633	Bufonidae	Rhinella gallardoi
1634	Bufonidae	Rhinella granulosa
1635	Bufonidae	Rhinella henseli
1636	Bufonidae	Rhinella hoogmoedi
1637	Bufonidae	Rhinella icterica
1638	Bufonidae	Rhinella inca
1639	Bufonidae	Rhinella jimi
1640	Bufonidae	Rhinella justinianoi
1641	Bufonidae	Rhinella lescurei
1642	Bufonidae	Rhinella limensis
1643	Bufonidae	Rhinella lindae
1644	Bufonidae	Rhinella macrorhina
1645	Bufonidae	Rhinella magnussoni

1646	Bufonidae	Rhinella manu
1647	Bufonidae	Rhinella margaritifera
1648	Bufonidae	Rhinella martyi
1649	Bufonidae	Rhinella nicefori
1650	Bufonidae	Rhinella ocellata
1651	Bufonidae	Rhinella ornata
1652	Bufonidae	Rhinella paraguas
1653	Bufonidae	Rhinella poeppigii
1654	Bufonidae	Rhinella pombali
1655	Bufonidae	Rhinella proboscidea
1656	Bufonidae	Rhinella pygmaea
1657	Bufonidae	Rhinella quechua
1658	Bufonidae	Rhinella roqueana
1659	Bufonidae	Rhinella rostrata
1660	Bufonidae	Rhinella rubescens
1661	Bufonidae	Rhinella rubropunctata
1662	Bufonidae	Rhinella ruizi
1663	Bufonidae	Rhinella rumbolli
1664	Bufonidae	Rhinella scitula
1665	Bufonidae	Rhinella spinulosa
1666	Bufonidae	Rhinella sternosignata
1667	Bufonidae	Rhinella tenrec
1668	Bufonidae	Rhinella vellardi
1669	Bufonidae	Rhinella veraguensis
1670	Bufonidae	Rhinella veredas
1671	Rhinodermatidae	Rhinoderma darwinii
1672	Rhinodermatidae	Rhinoderma rufum
1673	Centrolenidae	Rulyrana adiazeta
1674	Centrolenidae	Rulyrana flavopunctata
1675	Centrolenidae	Rulyrana mcdiarmidi
1676	Centrolenidae	Rulyrana saxiscandens
1677	Centrolenidae	Rulyrana spiculata
1678	Centrolenidae	Rulyrana susatamai

1679	Leptodactylidae	Rupirana cardosoi
1680	Centrolenidae	Sachatamia electrops
1681	Centrolenidae	Sachatamia orejuela
1682	Centrolenidae	Sachatamia punctulata
1683	Hylidae	Scarthyla goinorum
1684	Hylidae	Scarthyla vigilans
1685	Hylidae	Scinax acuminatus
1686	Hylidae	Scinax alter
1687	Hylidae	Scinax auratus
1688	Hylidae	Scinax baumgardneri
1689	Hylidae	Scinax blairi
1690	Hylidae	Scinax boesemani
1691	Hylidae	Scinax cabralensis
1692	Hylidae	Scinax caldarum
1693	Hylidae	Scinax camposseabrai
1694	Hylidae	Scinax cardosoi
1695	Hylidae	Scinax castroviejoi
1696	Hylidae	Scinax chiquitanus
1697	Hylidae	Scinax constrictus
1698	Hylidae	Scinax cretatus
1699	Hylidae	Scinax crospedospilus
1700	Hylidae	Scinax cruentommus
1701	Hylidae	Scinax curicica
1702	Hylidae	Scinax cuspidatus
1703	Hylidae	Scinax duartei
1704	Hylidae	Scinax elaeochroa
1705	Hylidae	Scinax eurydice
1706	Hylidae	Scinax exiguus
1707	Hylidae	Scinax funereus
1708	Hylidae	Scinax fuscomarginatus
1709	Hylidae	Scinax fuscovarius
1710	Hylidae	Scinax garbei
1711	Hylidae	Scinax granulatus

1712	Hylidae	Scinax hayii
1713	Hylidae	Scinax ictericus
1714	Hylidae	Scinax iquitorum
1715	Hylidae	Scinax jolyi
1716	Hylidae	Scinax karenanneae
1717	Hylidae	Scinax kennedyi
1718	Hylidae	Scinax manriquei
1719	Hylidae	Scinax maracaya
1720	Hylidae	Scinax nasicus
1721	Hylidae	Scinax nebulosus
1722	Hylidae	Scinax oreites
1723	Hylidae	Scinax pachycrus
1724	Hylidae	Scinax parkeri
1725	Hylidae	Scinax pedromedinae
1726	Hylidae	Scinax perereca
1727	Hylidae	Scinax proboscideus
1728	Hylidae	Scinax quinquefasciatus
1729	Hylidae	Scinax rostratus
1730	Hylidae	Scinax ruber
1731	Hylidae	Scinax similis
1732	Hylidae	Scinax squalirostris
1733	Hylidae	Scinax sugillatus
1734	Hylidae	Scinax tigrinus
1735	Hylidae	Scinax trilineatus
1736	Hylidae	Scinax uruguayus
1737	Hylidae	Scinax wandae
1738	Hylidae	Scinax x-signatus
1739	Leptodactylidae	Scythrophrys sawayae
1740	Dendrobatidae	Silverstoneia erasmios
1741	Dendrobatidae	Silverstoneia minima
1742	Dendrobatidae	Silverstoneia minutissima
1743	Dendrobatidae	Silverstoneia punctiventris
1744	Hylidae	Sphaenorhynchus caramaschii

1745	Hylidae	Sphaenorhynchus carneus
1746	Hylidae	Sphaenorhynchus dorisae
1747	Hylidae	Sphaenorhynchus lacteus
1748	Hylidae	Sphaenorhynchus mirim
1749	Hylidae	Sphaenorhynchus orophilus
1750	Hylidae	Sphaenorhynchus palustris
1751	Hylidae	Sphaenorhynchus planicola
1752	Hylidae	Sphaenorhynchus prasinus
1753	Hylidae	Sphaenorhynchus surdus
1754	Hemiphractidae	Stefania ackawaio
1755	Hemiphractidae	Stefania ayangannae
1756	Hemiphractidae	Stefania coxi
1757	Hemiphractidae	Stefania evansi
1758	Hemiphractidae	Stefania ginesi
1759	Hemiphractidae	Stefania riae
1760	Hemiphractidae	Stefania riveroi
1761	Hemiphractidae	Stefania roraimae
1762	Hemiphractidae	Stefania satelles
1763	Hemiphractidae	Stefania scalae
1764	Hemiphractidae	Stefania woodleyi
1765	Microhylidae	Stereocyclops incrassatus
1766	Microhylidae	Stereocyclops parkeri
1767	Craugastoridae	Strabomantis anatipes
1768	Craugastoridae	Strabomantis anomalus
1769	Craugastoridae	Strabomantis biporcatus
1770	Craugastoridae	Strabomantis cerastes
1771	Craugastoridae	Strabomantis cheiroplethus
1772	Craugastoridae	Strabomantis cornutus
1773	Craugastoridae	Strabomantis ingeri
1774	Craugastoridae	Strabomantis necerus
1775	Craugastoridae	Strabomantis necopinus
1776	Craugastoridae	Strabomantis ruizi
1777	Craugastoridae	Strabomantis sulcatus

1778	Craugastoridae	Strabomantis zygodactylus
1779	Microhylidae	Synapturanus mirandaribeiroi
1780	Microhylidae	Synapturanus rabus
1781	Microhylidae	Synapturanus salseri
1782	Craugastoridae	Tachiramantis douglasi
1783	Craugastoridae	Tachiramantis prolixodiscus
1784	Telmatobiidae	Telmatobius arequipensis
1785	Telmatobiidae	Telmatobius atacamensis
1786	Telmatobiidae	Telmatobius atahualpai
1787	Telmatobiidae	Telmatobius brachydactylus
1788	Telmatobiidae	Telmatobius brevipes
1789	Telmatobiidae	Telmatobius brevirostris
1790	Telmatobiidae	Telmatobius carrillae
1791	Telmatobiidae	Telmatobius ceiorum
1792	Telmatobiidae	Telmatobius chusmisensis
1793	Telmatobiidae	Telmatobius cirrhacelis
1794	Telmatobiidae	Telmatobius culeus
1795	Telmatobiidae	Telmatobius dankoi
1796	Telmatobiidae	Telmatobius degener
1797	Telmatobiidae	Telmatobius fronteriensis
1798	Telmatobiidae	Telmatobius gigas
1799	Telmatobiidae	Telmatobius halli
1800	Telmatobiidae	Telmatobius hauthali
1801	Telmatobiidae	Telmatobius hintoni
1802	Telmatobiidae	Telmatobius ignavus
1803	Telmatobiidae	Telmatobius intermedius
1804	Telmatobiidae	Telmatobius jelskii
1805	Telmatobiidae	Telmatobius laticeps
1806	Telmatobiidae	Telmatobius latirostris
1807	Telmatobiidae	Telmatobius macrostomus
1808	Telmatobiidae	Telmatobius marmoratus
1809	Telmatobiidae	Telmatobius mayoloi
1810	Telmatobiidae	Telmatobius mendelsoni
1811	Telmatobiidae	Telmatobius niger
------	----------------------	---------------------------
1812	Telmatobiidae	Telmatobius oxycephalus
1813	Telmatobiidae	Telmatobius pefauri
1814	Telmatobiidae	Telmatobius peruvianus
1815	Telmatobiidae	Telmatobius philippii
1816	Telmatobiidae	Telmatobius pinguiculus
1817	Telmatobiidae	Telmatobius rimac
1818	Telmatobiidae	Telmatobius sanborni
1819	Telmatobiidae	Telmatobius schreiteri
1820	Telmatobiidae	Telmatobius simonsi
1821	Telmatobiidae	Telmatobius stephani
1822	Telmatobiidae	Telmatobius thompsoni
1823	Telmatobiidae	Telmatobius timens
1824	Telmatobiidae	Telmatobius truebae
1825	Telmatobiidae	Telmatobius vellardi
1826	Telmatobiidae	Telmatobius vilamensis
1827	Telmatobiidae	Telmatobius yuracare
1828	Telmatobiidae	Telmatobius zapahuirensis
1829	Calyptocephalellidae	Telmatobufo australis
1830	Calyptocephalellidae	Telmatobufo bullocki
1831	Calyptocephalellidae	Telmatobufo venustus
1832	Hylidae	Tepuihyla edelcae
1833	Hylidae	Tepuihyla exophthalma
1834	Hylidae	Tepuihyla obscura
1835	Hylidae	Tepuihyla rodriguezi
1836	Hylidae	Tepuihyla tuberculosa
1837	Hylidae	Tepuihyla warreni
1838	Centrolenidae	Teratohyla adenocheira
1839	Centrolenidae	Teratohyla midas
1840	Cycloramphidae	Thoropa lutzi
1841	Cycloramphidae	Thoropa megatympanum
1842	Cycloramphidae	Thoropa miliaris
1843	Cycloramphidae	Thoropa petropolitana

1844	Cycloramphidae	Thoropa saxatilis
1845	Hylidae	Trachycephalus atlas
1846	Hylidae	Trachycephalus coriaceus
1847	Hylidae	Trachycephalus dibernardoi
1848	Hylidae	Trachycephalus hadroceps
1849	Hylidae	Trachycephalus imitatrix
1850	Hylidae	Trachycephalus jordani
1851	Hylidae	Trachycephalus lepidus
1852	Hylidae	Trachycephalus mesophaeus
1853	Hylidae	Trachycephalus nigromaculatus
1854	Hylidae	Trachycephalus resinifictrix
1855	Hylidae	Trachycephalus typhonius
1856	Centrolenidae	Vitreorana antisthenesi
1857	Centrolenidae	Vitreorana eurygnatha
1858	Centrolenidae	Vitreorana gorzulae
1859	Centrolenidae	Vitreorana helenae
1860	Centrolenidae	Vitreorana parvula
1861	Centrolenidae	Vitreorana ritae
1862	Centrolenidae	Vitreorana uranoscopa
1863	Hylidae	Xenohyla truncata
1864	Craugastoridae	Yunganastes bisignatus
1865	Craugastoridae	Yunganastes fraudator
1866	Craugastoridae	Yunganastes mercedesae
1867	Craugastoridae	Yunganastes pluvicanorus
1868	Cycloramphidae	Zachaenus carvalhoi
1869	Cycloramphidae	Zachaenus parvulus